

Because learning changes everything.®

© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.

Learning Objectives

LO12-1 Use ANOVA to test a hypothesis that three or more population means are equal.

LO12-2 Use confidence intervals to test and interpret differences between pairs of population means.

LO12-3 Use a blocking variable in a two-way ANOVA to test a hypothesis that three or more population means are equal.

الوما = سبعنه المقارنة البن ١3 و اكثر المن المجركات (الحابي)

A one-way ANOVA is used to compare three or more treatment means.

こしがと

- The assumptions underlying ANOVA are: The samples are from populations that follow normal distributions. المعتمات لديما المرامات معيابية مت وي
- The populations have equal standard deviations.
- اعمتمات مستعله • The populations are independent.

When the conditions are met, the test statistic has an \underline{F} -تودنیات ۲ distribution.

Why do we need ANOVA, why not use the previous method based on the t-distribution?

ANOVA: Analysis of Variance ²

We could compare the population means two at a time. Example: Suppose we have four groups.

- There are six comparisons we can make. Assistance
- Suppose we make each comparison at the 95% level.
- P(All correct) = (.95)(.95)(.95)(.95)(.95)(.95) = .735. = 735.
- The probability of at least one error is .265. 100-735=265?
- The Type 1 error buildup is not <u>satisfactory</u>!
 عند نحر ریون عد حرب ریون کون الجن ریابت کو تر مون ANOVA allows us to compare all the means simultaneously.
 Avoids the Type 1 error buildup.

محص الذفا دوم لذ العتام مجل كما نات دفت و اح لرخس

AB

BC

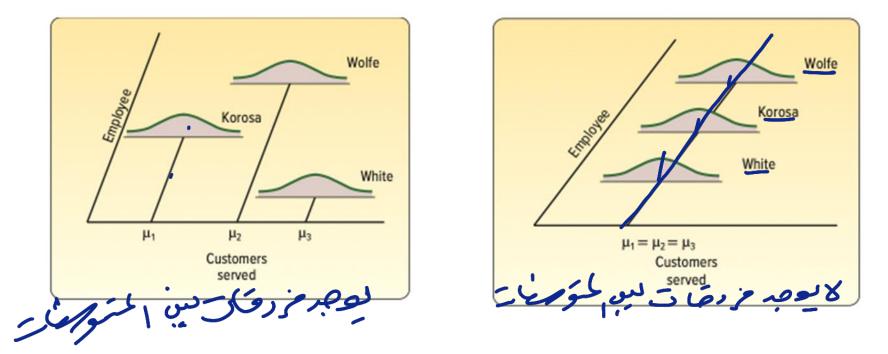
ANOVA was first developed for use in agriculture.

Example: Tomato plant heights for different amounts of fertilizer.

الزرائي

- Different plots of land would get <u>different amounts</u> of fertilizer.
- <u>Treatment</u> was used to identify the different plots/fertilizer amounts.

The term treatment identifies the different populations or groups.


ANOVA analyzes how the population means vary by the different treatments.

3 <u>3</u> 3

- Example: Joyce Kuhlman manages a regional financial center.
- She wants to compare the productivity, as measured by the number of customers served, among three employees.
- Four days are randomly selected and the number of customers served by each employee is recorded.
- Is there a difference in the mean number of customers served?
 عدر ۱ نزبانی
 Wolfe
 Wolfe
 Wolfe

Weife	White	Korosa
55	66	47
54	76	51
59	67	46 ·
56	71	48

- Example continued.
- Different vs Not Different.

We want to determine if the population means are different.

H, Mz M3

- Assume the population variances are the same.
- ANOVA compares means through their variances. $(x x)^2$ Estimate the common population variances two ways. The test statistic is the ratio of the two estimates. $(x - x)^2$
- If the means are the same, the ratio should be 1.
- If the ratio is <u>larger than 1</u>, we might conclude the means are not the sample.

Use the F-distribution to determine when the ratio being greater than 1 occurred by chance.

• Break the total variation into two parts.

Total Variation The sum of the squared differences between each observation and the overall mean. ممبرة مربعات لاختلاف سر بين تر المتوسط التي

> Treatment Variation The sum of the squared differences between each treatment mean and the grand or overall mean. مركز فرق بين كل متوسط Random Variation The sum of the squared

Random Variation The sum of the squared differences between each observation and its treatment mean.

ANOVA: Analysis of Variance ³

• The test statistic is the ratio of the estimates.

Between treatments estimate of the variances. Within treatments estimate of the variances. MST MSE

- Has an F-distribution. • Numerator df = k - 1. • Denominator df = n - k.
- k is the number of treatments.
- *n* is the total number of observations.

- Total : <u>SS total</u> = $\sum (x \bar{x}_G)^2$.
- Within : $\underline{SSE} = \sum (x \bar{x}_{C})^{2}$.
- Between : SST = SS total SSE.
- \bar{x}_{G} is the overall grand mean.
- \bar{x}_c is the sample mean for treatment *c*.
- Summarize with an ANOVA table.

ANOVA Table

	Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F
ديب بجوى	Treatments	SST	<u>k-13-1=2</u>	S S T/(k-1) = M S T	MST/MSE
درفن	Error	SSE	n-k 3-3-a	S S E/(n-k) = M S E	
31.	Total	S S total	n−1 👖		

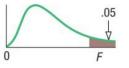
¥:	مركار	عدرع
		•

	Wolfe	white	Korosa
	55 🖌	66	47
	54	76	51
	59	67	46
	56	71	48
	n=4	N> 4	N=4
sum	224		
mean	56	70	48

			د ط
Х	(X-XG) ²	(X-XC) ²	<u>A</u>
55	9	1	
54	16	4	
59 •	1	9	
56	4	0	
66	64	16	X.
76	324	36	×
67	81	9	ス
71	169	1	
47	121	1	
51	49	9	
46	144	4	
48 [.]	100	0	
696	1082	90	992
58		1	1
mean X G	SS TOTAL	SSE	SST

	D عناج النوطات
sa	$H_0: \mathcal{H}_1 = \mathcal{H}_2 = \mathcal{H}_2$
	$H_1: \mathcal{M}_1 \neq \mathcal{M}_2 = \mathcal{M}_3$
<u> </u>	x=0.05 3
4	F Coitich and une 3
	F Usition and States
) ²	$df_{i} = K - I = 3 - I = 2$
	$df_{2} = n - k = 12 - 3 = 9$
	ال عاب الموسطات لائل تجريح ع ال
	(4) حساب المسقومطات لاتل مجري مي X
	Xc grand mean clues ??
	-B SStotal Uno 6
	SS total = $Z(X - X_G)^2$
	SSE yours 3
	$SSE = \Xi(X - \overline{X})^2$
	<u>مسابہ SST واسم</u>
	1 SST=SSTOTAL-SSE
	SST = 1082-90=99.2
محوب	S, -

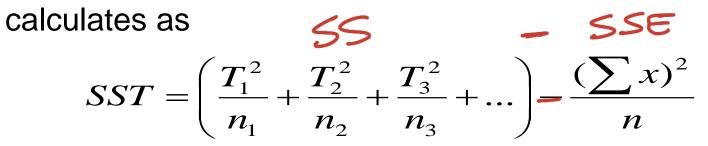
Anova		وب	- 122	ب لببا ب	Anara U all all	
Source of Variation	SS	DF	MS	F	F-CRITICAL	
Between Groups	SST 992	2	496	49.6	4.26	
Within Groups	SSE qo	9	ID			
Total	SS total 1082					1
			•	•		


MST = SST + (K-1) MSE = SSE + (N-K) MS مسابه (10)

 $49.6 = \frac{496}{10} = \frac{MST}{MSE} = F = 10$

Appendix B

5


B.4 Critical Values of the *F* **Distribution** at a 5 Percent Level of Significance

			Degrees of Freedom for the Numerator														
		1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40
	1	161	200	216	225	230	234	237	239	241	242	244	246	248	249	250	251
	2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5
	3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46
	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34
	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04
	0	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83
tor	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66
nina	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53
nor	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43
Del	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34
he	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27
for t	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20
Jegrees of Freedom for the Denominator	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15
eed	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10
L.	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06
S 0	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03
ree	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99
Jeg	~	4.00	0.47	0.07		0.00	0.57	0.40	0.10	0.07	0.00	0.05	0.40	0.40	0.05	0.04	1

Sums of the Squares Treatment

The *sum of the squares treatment*, denoted by <u>SST</u>, is

Where

-x = the score of a sample

u = 12

- the score of a sample -k = the number of different samples (or treatments)
- n_i = the size of sample i_{-}
- $-T_i$ = the sum of the values in sample *i*
- n_T = the number of values in <u>all samples</u> = $n_1 + n_2 + n_3 + \dots$
- Σx = the sum of the values in all samples = $T_1 + T_2 + T_3 + \dots$
- $-\Sigma x^2$ = the sum of the squares of the values in all samples 12

Total Sum of Squares

The *Total sum of squares* denoted by SSTotal, and is calculated as

$$SStotal = \sum x^2 - \frac{(\sum x)^2}{n}$$

Where

 $n = \text{the number of values in all samples} = n_1 + n_2 + n_3 + \dots$

 Σx = the sum of the values in all samples = $T_1 + T_2 + T_3 + ...$ Σx^2 = the sum of the squares of the values in all samples

- Example: A group of four airlines hired Brunner Marketing Research Inc. to survey passengers regarding their level of satisfaction with a recent flight.
- Twenty-five questions offered a range of possible answers: excellent (4), good (3), fair (2), poor (1), so the highest possible score was 100,

Northern	ペック	イ・ナ	N=0
Northern	WTA	Pocono	Branson
94	75	70	68
90	68	73	70
85	77	76	72
80	83	78	65
	88	80	74
		68	65
		65	

 Is there a difference in the mean satisfaction level among the four airlines?

OHO = MI = lez = M3 = M4 HI= the mean are not equal

2 a= 0.05

Northern	WTA	Pocono	
	2.6	2	Branson
94	75	70	68
90	68	73	70
85	77	76	72
80	83	78	65
	88	80	74
		68	65
		65	

Data

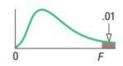
 $\alpha = 0.01$

Anova: Single Factor

SUMMARY				
Groups	Count	Sum	Average	Variance
Northern	4	349	87.25	36.91667
WTA	5	391	78.2	58.7
Pocono	7	510	72.85714	30.14286
Branson	6	414	69	13.6

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	890.6838	3	296.8946	8.990643	0.000743	3.159908
Within Groups	594.4071	18	33.02262		, ,	
Total	1485.091	21				
				/		
			~			Je
			tesi Slaisti			Foritied
		6	La : ch	- ((Wit e
			>10121	C		
					0	197
			T			
		وبے	3			
		69				
AL						

the tost statatistic is greater than critical value then reject null hypthiss


(4	Northern	WTA	Pocono	Branson
-	, 94.00 📕	75.00	70.00	68.00
	90.00	68.00	73.00	70.00
	85.00	77.00	76.00	72.00
	80.00	83.00	78.00	65.00
		88.00	80.00	74.00
			68.00	65.00
	·×·	5	65.00	
	87.25	78.20	72.86	69.00

(3) $df_{1} = K - 1 = 4 - 1 = 3$ $df_{2} = 22 - 4 = 18$ Ferincal = 3.10

3)	ss tolar	SSE	
Х	(X-XG) ²	(X-XC) ²	
94.00	337.09	45.56	
90.00	206.21	7.56	
85.00	87.61	5.06	
80.00	19.01	52.56	
75.00	0.41	10.24	
68.00	58.37	104.04	
77.00	1.85	1.44	
83.00	54.17	23.04	
88.00	152.77	96.04	
70.00	31.81	8.18	
73.00	6.97	0.02	
76.00	0.13	9.86	
78.00	5.57	26.42	
80.00	19.01	50.98	
68.00	58.37	23.62	
65.00	113.21	61.78	
68.00	58.37	1.00	
70.00	31.81	1.00	
72.00	13.25	9.00	
65.00	113.21	16.00	
74.00	2.69	25.00	
65.00	113.21	16.00	
75.64	1485.09	<mark>594.4</mark> 1	890.7
mean X G	SS TOTAL	SSE	SST
	94.00 90.00 85.00 80.00 75.00 68.00 77.00 83.00 88.00 77.00 73.00 73.00 63.00 63.00 63.00 63.00 73.00 73.00 73.00 73.00 73.00 73.00 65.00	X(X-XG)294.00337.0990.00206.2185.0087.6180.0019.0175.000.4168.0058.3777.001.8583.0054.1788.00152.7777.0031.8173.006.9776.000.1378.005.5780.0019.0168.0058.3765.00113.2172.0031.8172.0031.8172.0031.8172.0013.2565.00113.2174.002.6965.00113.2174.002.6965.00113.21	X (X-XG) ² (X-XC) ² 94.00 337.09 45.56 90.00 206.21 7.56 85.00 87.61 5.06 80.00 19.01 52.56 80.00 19.01 52.56 80.00 0.41 10.24 68.00 58.37 104.04 77.00 1.85 1.44 83.00 54.17 23.04 88.00 152.77 96.04 70.00 31.81 8.18 73.00 6.97 0.02 76.00 0.13 9.86 78.00 5.57 26.42 80.00 19.01 50.98 68.00 58.37 23.62 65.00 113.21 61.78 68.00 58.37 2.00 68.00 58.37 1.00 70.00 31.81 1.00 72.00 13.25 9.00 65.00 113.21 16.00 74.0

Source of Variation	SS	DF	MS	F	F-CRITICAL
Between Groups	SST 890.7	3	296.9	8.99	3.16
Within Groups	SSE 594.41	18	33.02		
Total	SS 1485.09	21			

B.6B Critical Values of the *F* Distribution ($\alpha = .01$)

							D	egrees of	Freedor	n for the	Numerat	tor					
	21	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40
	1	4052	5000	5403	5625	5764	5859	5928	5981	6022	6056	6106	6157	6209	6235	6261	628
	2	98.5	99.0	99.2	99.2	99.3	99.3	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.5	99.5	99.5
	3	34.1	30.8	29.5	28.7	28.2	27.9	27.7	27.5	27.3	27.2	27.1	26.9	26.7	26.6	26.5	26.4
	4	21.2	18.0	16.7	16.0	15.5	15.2	15.0	14.8	14.7	14.5	14.4	14.2	14.0	13.9	13.8	13.7
	5	16.3	13.3	12.1	11.4	11.0	10.7	10.5	10.3	10.2	10.1	9.89	9.72	9.55	9.47	9.38	9.29
	6	13.7	10.9	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.72	7.56	7.40	7.31	7.23	7.14
	7	12.2	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.47	6.31	6.16	6.07	5.99	5.9
	8	11.3	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.67	5.52	5.36	5.28	5.20	5.12
	9	10.6	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26	5.11	4.96	4.81	4.73	4.65	4.57
tor	10	10.0	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.71	4.56	4.41	4.33	4.25	4.17
uegrees of Freedom for the Denominator	11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.40	4.25	4.10	4.02	3.94	3.8
ē	12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.16	4.01	3.86	3.78	3.70	3.62
ne	13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	3.96	3.82	3.66	3.59	3.51	3.43
E.	14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94	3.80	3.66	3.51	3.43	3.35	3.2
5	15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.67	3.52	3.37	3.29	3.21	3.13
E	16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.55	3.41	3.26	3.18	3.10	3.02
ä	17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.46	3.31	3.16	3.08	3.00	2.9
Ē	18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.37	3.23	3.08	3.00	2.92	2.84
5	19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.30	3.15	3.00	2.92	2.84	2.76
B	20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.23	3.09	2.94	2.86	2.78	2.6
neg n	21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	3.17	3.03	2.88	2.80	2.72	2.6
	22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.12	2.98	2.83	2.75	2.67	2.5
	23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	3.07	2.93	2.78	2.70	2.62	2.5
	24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.03	2.89	2.74	2.66	2.58	2.49
	25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22	3.13	2.99	2.85	2.70	2.62	2.54	2.4
	30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.84	2.70	2.55	2.47	2.39	2.3
	40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.66	2.52	2.37	2.29	2.20	2.1
	60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.50	2.35	2.20	2.12	2.03	1.9
	120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47	2.34	2.19	2.03	1.95	1.86	1.70
	00	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32	2.18	2.04	1.88	1.79	1.70	1.59

Example continued.

Step 1.

- $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4.$
- H_1 : The mean scores are not all equal.

Step 2: Use 0.05

Step 3: F = MTS/MSE.

Step 4.

- k = 4, n = 22.
- Numerator df = k 1 = 4 1 = 3.
- 5 Denominator df = n k = 22 4 = 18.
- The critical value is 5209.

- Example continued.
- Step 5:

SStotal = $\sum (x - \bar{x}_G)^2 = 1,485.10.$

			•						•
	Northern	WTA	Pocono	Branson	Total	Northern	WTA	🖊 Pocono 🦯	Branson
	94 90	75 68	70 73	68 70		18.36	-0.64	-5.64	-7.64
	85	77	76	72		14.36	-7.64	-2.64	-5.64
	80	83 88	78 80	65 74		9.36	1.36	0.36	-3.64
			68 65	65		4,36	7.36	2.36	-10.64
Column			00	Grand Mea	an	· ·	12.36	4.36	-1.64
total	349	<u>391</u> 5	510	414	1,664			-7.64	-10.64
Mean	87.25	78.20	72.86	69.00	75.64		(-10.64	

	Northern	WTA	Pocono	Branson	Total	
	337.09	0.41	31.81	58.37		
	206.21	58.37	6.97	31.81		
	87.61	1.85	0.13	13.25		
	19.01	54.17	5.57	113.21		
		152.77	19.01	2.69	SS Total	
			58.37	113.21		
			113.21			
Total	649.92	267.57	235.07	332.54	1,485.10	~

- Example continued.
- Step 5 continued:

$$SSE = \sum (x - \bar{x}_{e})^2 = 594.41$$

Northern	WTA	Pocono	Branson
6.75	-3.2	-2.86	-1
2.75	-10.2	0.14	1
-2.25	-1.2	3.14	3
-7.25	4.8	5.14	-4
	9.8	7.14	5
		-4.86	-4
		-7.86	

	Northern	WTA	Pocono	Branson	Total	
	45.5625	10.24	8.18	1		
	7.5625	104.04	0.02	1		~
	5.0625	1.44	9.86	9		-
	52.5625	23.04	26.42	16		
		96.04	50.98	25		
			23.62	16	SSE	
			61.78			
Total	110.7500	234.80	180.86	68	594.41	

•
$$SST = SS$$
total $-SSE = 1,485.10 - 594.41 = 890.69.$

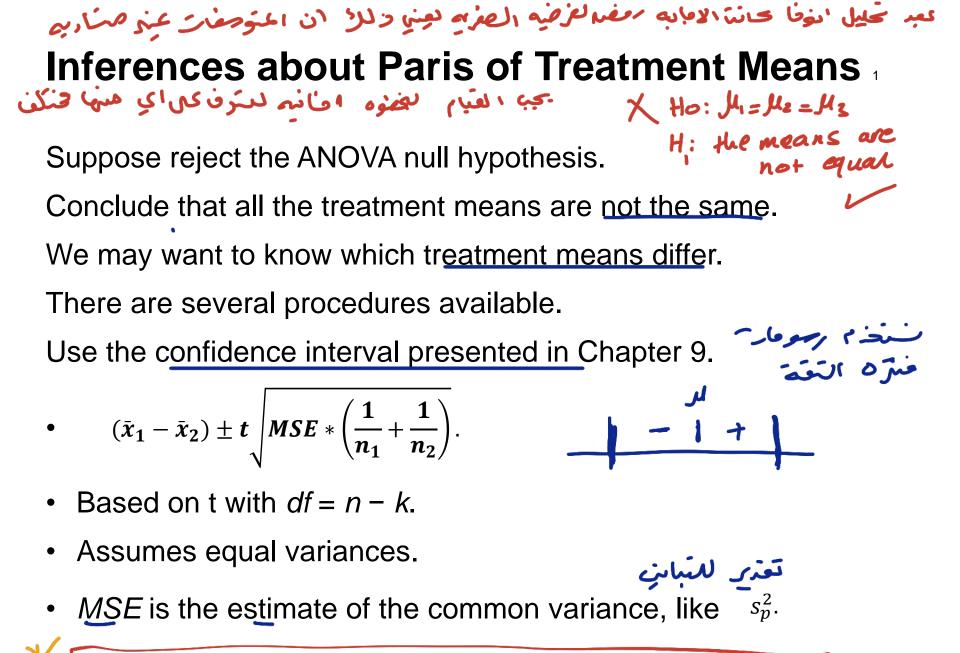
Example continued.

Step 5 continued.

• MST = SST/k - 1 = 890.69/3 = 296.90.

•
$$MSE = SSE/n - k = 594.41/18 = 33.02.$$

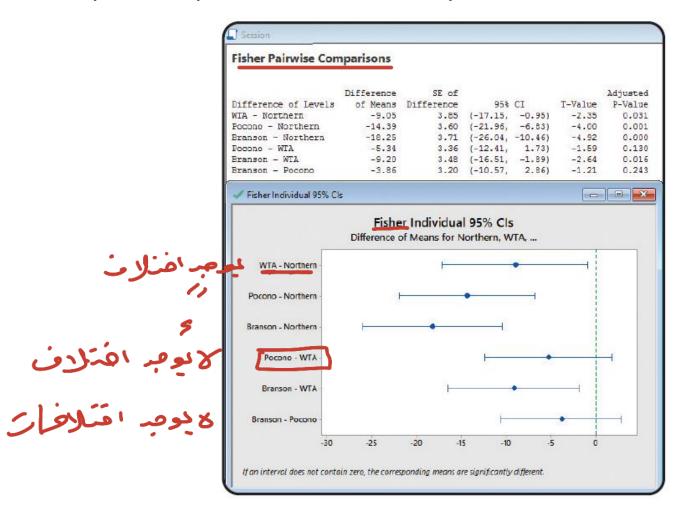
•
$$F = MTS/MSE = 296.90/33.02 = 8.99.$$


Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F
Treatments	890.69	3	296.90	8.99
Error	594.61	18	33.02	
Total	1,485.10	21		

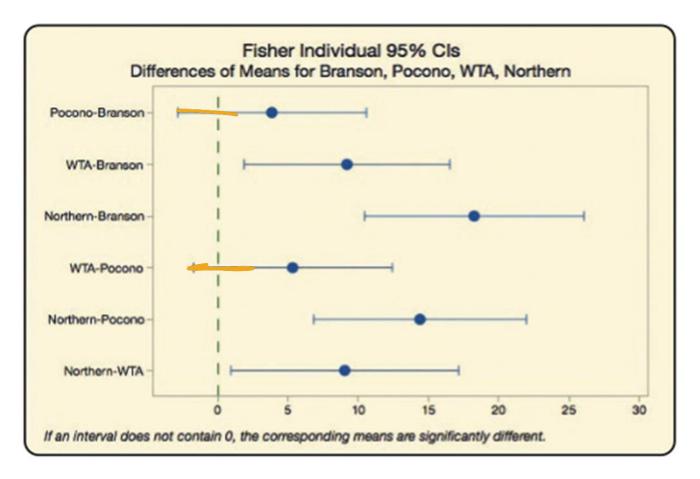
The test statistic is greater than the critical value, reject the null hypothesis.
 3.16

Step 6: We can conclude the population means are not all equal.

• Example continued.


4	A	В	С	D	E	F	G	н	1	J	K	L	M
L	Northern	WTA	Pocono	Branson		Anova: Single Factor							
2	94	75	70	68									
3	90	68	73	70		SUMMARY							
1	85	77	76	72		Groups	Count	Sum	Average	Variance			
5	80	83	78	65		Northern	4	349	87.250	36.917			Τ
5		88	80	74		WTA	5	391	78.200	58.700		0,0	5
7			68	65		Pocono	7	510	72.857	30.143	4	2, -	T
8			65			Branson	6	414	69.000	13.600			
9													
LO						ANOVA							Τ
1						Source of Variation	SS	df	MS	F	P-value	F crit	1
2						Between Groups	890.684	3	296.895	8.99	0.0007	3.160	1
13						Within Groups	594.407	18	33.023				Г
4													T
5						Total	1485.091	21					Т
16					1						-		1

Confidence intervals that include 0 indicate no difference.


Inferences about Paris of Treatment Means 2

• Example: The previous airline example.

Inferences about Paris of Treatment Means 3

• Example continued.

تحلل الفظ التنائ **Two-Way Analysis of Variance**

معادر التياب We have only considered one source of variation. SST 55

SSE Total = Between + Within

We called the within error the error/random variation.

There might be other sources of variation to explain. عنه الا صمام (سترح) العبتر للبيب بن علوب العن العل If we can explain more of the variation, then there is less error or

- random variation. کی قری کی مار رکتام ۱ جمز و میتہ ۲ تقبیح متام Denominator of the F statistic will be smaller.
- Results in a larger F statistic.
 محدا يودي الحامة العبر لرفعن درجه العرب
 We might reject the null hypothesis.

Refer to other variables as blocking variables.

	y anovci		H.: 1	$l_1 = h_2$	_ y/z
هبره	الرياحتا	الدمام			
25	41	50	SS E	- 55 -	SST
30	24	49	ξ	5	Ę
40	15	35	Eror	tored	Treatment
15	33	25	with in		Between
			group		groups

	two u	suy anou	ju test	
	مبره	المرياحت	الدمام	بوهبرمتعتير المحدّة
ç	25	41	50	متعتد في لعيون
عى	30	24	49	العمر
10	40	15	35	
J	15	33	25	مل مناد احتلافات بين
C	20	15	40	حرجات لفلوب مح
کم	21	20	12	
	23	35	18	
من				اعدينيه الحم
				Two way test

Treutment = آلاظرة = Treutment (اعد:) blocking = العفين = blocking (العمر) D₽ SSE = SS - SST (SSB) K-1 ss T 6-1 SSB <u>SSE</u> SS (K-1)(b-1) N-1

Two-Way Analysis of Variance ²

Blocking Variable A second treatment variable that when included in the ANOVA analysis will have the effect of reducing the SSE term.

$$\bullet SSE = SS \ total - SST - SSB.$$

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F
Treatments	SST	<i>k</i> – 1	SST/(k-1) = MST	MST/MSE
Blocks	SSB	<i>b</i> – 1	SSB/(b-1) = MSB	MSB/MSE
Error	SSE	(<i>k</i> – 1) (<i>b</i> – 1)	SSE/(n-k) = MSE	
Total	SS total	<i>n</i> – 1		

Two-Way Analysis of Variance ³

- Example: WARTA is expanding bus service from the suburb of Starbrick to the business district of Warren. ۲ حرف (صارت) ۲ – نقین (Prs.
- There are four routes being considered and five drivers.

Driver	Travel Time from Starbrick to Warren (minutes) U.S. 6	Travel Time from Starbrick to Warren (minutes) West End	Travel Time from Starbrick to Warren (minutes) Hickory St.	Travel Time from Starbrick to Warren (minutes) Rte. 59
Deans	18	17	21	22
Snavely	16	23	23	22
Ormson	21	21	26	22
Zollaco	23	22	29	25
Filbeck	25	24	28	28
 At the time a If we reprint the travel 	along the four roo remove the effec	ومن من مرود معنى مر مر e level, 'i <u>s there a diffe</u> <u>utes?</u> دts of the drivers, is t	منود من ترمین erence in the m عادی الارانی here a difference	مل مبال ean travel ice in the mean

خ تزمن الرحلة جسب صار ألياص

عنبه الزمزت

Ho: M1 = M2 = M3 = M4 H1: Not all travels are the same

عطبة تحليل الزفا باستحذام المسل

Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	5	103	20.6	13.3		
Column 2	5	107	21.4	7.3		
Column 3	5	127	25.4	11.3		1
Column 4	5	119	23.8	7.2	7	به کر و
		Te	st slat	stics		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	Forit
Between Groups	72.8	3	24.26666667	2.482523444	0.09810	3.238872
	156.4	16	9.775			
Within Groups	156.4	10		8		

2.48 < 3.238) 3.23 (3) Frest statistic < Ferritical valu

Do not reject Null hy pothysis

لايع حبد ادله كافيه ان حنال اختلافا استلافار عتبه ان تكدن مسبعه الصرفه 50.0 < 0.098 × 0.05 لا ترقف لراف لعواج

(0.05) × ن ب Pradue تن (0.05) دعمل الغزضه العمس P>x do not reject Ho p< x rejet Ho

Two-Way Analysis of Variance 4

• Example continued.

1	A	B	C	D	E	F	G	H	1	1	K	L	M
1							Anova: Single Factor						
2			R	outes									
3	Driver	U.S 6	West En	d Hickory St.	Route 59		SUMMARY						
4	Deans	18	17	21	22		Groups	Count	Sum	Average	Variance		
5	Snaverly	16	23	23	77		U.S 6	5	103	20.6	13.3		
6	Ormson	21	21	26	77		West End	5	107	21.4	7.3		
7	Zollaco	23	22	29	25		Hickory St.	5	127	25.4	11.3		
8	Filbeck	25	24	28	28		Route 59	5	119	23.8	7.2		
9													
10													
11				Treatme	ant		ANOVA						
12							Source of Variation	55	df	MS	F	P-value	Fcrit
13				(Block)		Between Groups	72.8	3	24.267	2.483	0.098	3.23
14			-		-	_	Within Groups	156.4	16	9.775			
15				Error	-								
16							Total	229.2	19				

Two-Way Analysis of Variance 5

• Example continued.

1	A	8	C	D	E	F	G	H	1	1	K	1	M
1							Anova: Single Factor						
2			R	outes									
3	Driver	U.S 6	West En	d Hickory St	Route 59		SUMMARY						
4	Deans	1.8	17	21	22		Groups	Count	Sum	Average	Variance		
5	Snaverly	16	23	73	77		11.5.6	5	103	20.6	13.3		
6	Ormson	21	21	26	77		West End	5	107	21.4	7.3		
7	Zollaco	23	22	29	25		Hickory St.	5	127	25.4	11.3		
8	Filbeck	25	24	28	28		Route 59	5	119	23.8	7.2		
9													
10													
11			6	Treatme	ant		ANOVA						
12							Source of Variation	55	df	MS	F	P-value	Fcrlt
13				(Block			Between Groups	72.8	3	24.267	2.483	0.098	3.23
14			-	22000		_	Within Groups	156.4	16	9.775			
15				Error									
16							Total	229.2	19				

- $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4.$
- H_1 : Not all travel time means are the same.
- The p-value is .098, do not reject the null hypothesis.
- Differences in the mean travel time due to route could be due to chance.

Two-Way Analysis of Variance 6

- Example continued.
- Let drivers be the blocking variable.

Driver	Travel Time from Starbrick to Warren (minutes) U.S. 6	Travel Time from Starbrick to Warren (minutes) West End	Travel Time from Starbrick to Warren (minutes) Hickory St.	Travel Time from Starbrick to Warren (minutes) Rte. 59
Deans	18	17	21	22
Snavely	16	23	23	22
Ormson	21	21	26	22
Zollaco	23	22	29	25
Filbeck	25	24	28	28

Driver	Travel Time from Starbrick to Warren (minutes) U.S. 6	Travel Time from Starbrick to Warren	Travel Time from Starbrick to Warren (minutes) Hickory St.	to Warren	Travel Time from Starbrick to Warren (minutes) Driver Sums	Travel Time from Starbrick to Warren (minutes) Driver Means
Deans	18	17	21	22	78	19.50
Snavely	16	23	23	22	84	21.00
Ormson	21	21	26	22	90	22.50
Zollaco	23	22	29	25	99	24.75
Filbeck	25	24	28	28	105	26.25

blockny	variable	الاعتبار	ىقىپ	نبنون	: ۱	ا ف
			ニ	الز شا	حبال	ے د
Ho	$\mathcal{M}_1 = \mathcal{M}_2$	_ M3 =	"hy			
(H ı	; Not	all trav	e' tim	e are	S	ame
	TI	٥		-		
	Ino way f	Inava		Chils	عنق	ے ذ
	The way f	anava		كلاح	<i>ع</i> نق	2) د
SUMMARY	Count	Sum	Average	Variance	<i>ع</i> نبق ا	2) د
SUMMARY Row 1	Count 4	Sum 78	19.5	Variance 5.666666666	•	2) د
SUMMARY Row 1 Row 2	Count 4 4	Sum 78 84	19.5 21	Variance 5.666666667 11.33333333	•	2) د
SUMMARY Row 1 Row 2 Row 3	Count 4 4 4	Sum 78 84 90	19.5 21 22.5	Variance 5.6666666667 11.3333333 5.6666666667	•	2) د
SUMMARY Row 1 Row 2 Row 3 Row 4	Count 4 4 4 4 4	Sum 78 84 90 99	19.5 21 22.5 24.75	Variance 5.6666666667 11.3333333 5.666666667 9.583333333	•	2) د
SUMMARY Row 1 Row 2 Row 3 Row 4	Count 4 4 4	Sum 78 84 90	19.5 21 22.5	Variance 5.6666666667 11.3333333 5.6666666667	•	2) د
SUMMARY Row 1 Row 2 Row 3 Row 4 Row 5	Count 4 4 4 4 4 4	Sum 78 84 90 99 105	19.5 21 22.5 24.75 26.25	Variance 5.6666666667 11.3333333 5.6666666667 9.583333333 4.25	•	2) د
SUMMARY Row 1 Row 2 Row 3 Row 4 Row 5 Column 1	Count 4 4 4 4 4 4 5	Sum 78 84 90 99 105 103	19.5 21 22.5 24.75 26.25 20.6	Variance 5.6666666667 11.3333333 5.6666666667 9.583333333 4.25 13.3	•	
SUMMARY Row 1 Row 2 Row 3 Row 4 Row 5 Column 1 Column 2	Count 4 4 4 4 4 4 5 5 5	Sum 78 84 90 99 105 103 103	19.5 21 22.5 24.75 26.25 20.6 21.4	Variance 5.6666666667 11.3333333 5.6666666667 9.583333333 4.25 13.3 7.3	•	
SUMMARY Row 1 Row 2 Row 3 Row 4 Row 5 Column 1 Column 2 Column 3	Count 4 4 4 4 4 4 5 5 5 5 5	Sum 78 84 90 99 105 103 107 127	19.5 21 22.5 24.75 26.25 20.6 21.4 25.4	Variance 5.666666667 11.3333333 5.666666667 9.58333333 4.25 13.3 7.3 11.3	•	
	Count 4 4 4 4 4 4 5 5 5	Sum 78 84 90 99 105 103 103	19.5 21 22.5 24.75 26.25 20.6 21.4	Variance 5.6666666667 11.3333333 5.6666666667 9.583333333 4.25 13.3 7.3	•	
SUMMARY Row 1 Row 2 Row 3 Row 4 Row 5 Column 1 Column 1 Column 2 Column 3 Column 4	Count 4 4 4 4 4 4 5 5 5 5 5	Sum 78 84 90 99 105 103 107 127	19.5 21 22.5 24.75 26.25 20.6 21.4 25.4	Variance 5.666666667 11.3333333 5.666666667 9.58333333 4.25 13.3 7.3 11.3	•	
SUMMARY Row 1 Row 2 Row 3 Row 4 Row 5 Column 1 Column 1 Column 2 Column 3 Column 4	Count 4 4 4 4 4 4 5 5 5 5 5 5	Sum 78 84 90 99 105 103 107 127 119	19.5 21 22.5 24.75 26.25 20.6 21.4 25.4 23.8	Variance 5.6666666667 11.3333333 5.6666666667 9.58333333 4.25 13.3 7.3 11.3 7.2		
SUMMARY Row 1 Row 2 Row 3 Row 4 Row 4 Column 1 Column 2 Column 3 Column 4 ANOVA Source of Variation	Count 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Sum 78 84 90 99 105 103 107 127 119 df	19.5 21 22.5 24.75 26.25 20.6 21.4 25.4 23.8 MS	Variance 5.6666666667 11.3333333 5.666666667 9.58333333 4.25 13.3 7.3 11.3 7.2	P-value	F crit
SUMMARY Row 1 Row 2 Row 3 Row 4 Row 5 Column 1 Column 2 Column 3 Column 4 ANOVA Source of Variation	Count 4 4 4 4 4 4 5 5 5 5 5 5	Sum 78 84 90 99 105 103 107 127 119 df 4	19.5 21 22.5 24.75 26.25 20.6 21.4 25.4 23.8	Variance 5.6666666667 11.3333333 5.666666667 9.58333333 4.25 13.3 7.3 11.3 7.2		F crit
SUMMARY Row 1 Row 2 Row 3 Row 4 Row 5 Column 1 Column 2 Column 3 Column 4 ANOVA Source of Variation Rows Columns	Count 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Sum 78 84 90 99 105 103 107 127 119 df	19.5 21 22.5 24.75 26.25 20.6 21.4 25.4 23.8 MS	Variance 5.6666666667 11.3333333 5.666666667 9.58333333 4.25 13.3 7.3 11.3 7.2 <i>F</i> 9.784741144	P-value	F crit 259167
SUMMARY Row 1 Row 2 Row 3 Row 4 Row 5 Column 1 Column 2 Column 3 Column 4 ANOVA	Count 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	Sum 78 84 90 99 105 103 107 127 119 df 4	19.5 21 22.5 24.75 26.25 20.6 21.4 25.4 23.8 <i>MS</i> 29.925	Variance 5.6666666667 11.3333333 5.666666667 9.58333333 4.25 13.3 7.3 11.3 7.2 <i>F</i> 9.784741144	• 	F crit 259167
SUMMARY Row 1 Row 2 Row 3 Row 4 Row 5 Column 1 Column 2 Column 3 Column 4 ANOVA Source of Variation Rows Columns	Count 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	Sum 78 84 90 99 105 103 107 127 119 df 4 3	19.5 21 22.5 24.75 26.25 20.6 21.4 25.4 23.8 MS 29.925 24.266666667	Variance 5.6666666667 11.3333333 5.666666667 9.58333333 4.25 13.3 7.3 11.3 7.2 <i>F</i> 9.784741144	• 	F crit 259167

(العذب (العذب) تحقیم الم[.]فنہ لھزینہ -FJ Fonitour reject Ho 9.78 > 3.25 مع جب اختلامات في رَحْن الرحمة المحتلف ل Pulle < x reject Ho الوار (الاعدة) 7.9 > 3.4 **rejea** Ho تومفن المزحد العفريت بوجر اضلافات ترزمن المحمله مجب حار الماف

Two-Way Analysis of Variance 7

• Example continued.

1	A	8	C	D	E	F	G	H	1	J	K	L	M
1													
2													
3			Ro	utes			Anova: Two-Factor	Without	Replicat	ion			
4	Driver	U.5 6	West End	Hickory S	t. Route 59								
5	Deans	18	17	21	22		SUMMARY	Count	Sum	Average	Variance		
6	Snaverly	16	23	23	22		Deans	4	78	19.50	5.67		
7	Ormson	21	21	26	22		Snaverly	4	84	21.00	11.33		
8	Zollaco	23	22	29	25		Ormson	4	90	22.50	5.67		
9	Filbeck	25	24	28	28		Zollaco	4	99	24.75	9.58		
10							Filbeck	4	105	26.25	4.25		
11													
12							U.S 6	5	103	20.60	13.30		
13							West End	5	107	21.40	7.30		
14							Hickory St.	5	127	25.40	11.30		
15							Route 59	5	119	23.80	7.20		
16													
17													
18					Block		ANOVA						
19							Source of Variation	55	df	MS	F	P-value	Fcrit
20					(Driver)	-	Rows	119.7	4	29.925	9.785	0.001	3.259
21						-	Columns	72.8	3	24.267	7.935	0.004	3.490
22				T	reatment		Error	36.7	12	3.058			
23					(Route)								
24					(nourc)		Total	229.2	19				

Access the text alternative for these images.

Two-Way Analysis of Variance ³

• Example continued.

1	Α	В	C	D	E	F	G	H	1.	1	K	L	M
1													
2													
3			Ro	ites			Anova: Two-Factor	Without	Replicat	ion			
4	Driver	U.5 6	West End	Hickory St	Route 59								
5	Deans	18	17	21	22		SUMMARY	Count	Sum	Average	Variance		
6	Snaverly	16	23	23	22		Deans	4	78	19.50	5.67		
7	Ormson	21	21	26	22		Snaverly	4	84	21.00	11.33		
8	Zollaco	23	22	29	25		Ormson	4	90	22.50	5.67		
9	Filbeck	25	24	28	28		Zollaco	4	99	24.75	9.58		
10							Filbeck	4	105	26.25	4.25		
11													
12							U.S 6	5	103	20.60	13.30		
13							West End	5	107	21.40	7.30		
14							Hickory St.	5	127	25.40	11.30		
15							Route 59	5	119	23.80	7.20		
16													
17													
18				1	Block		ANOVA						
19				58			Source of Variation	55	df	MS	F	P-value	Fcrit
20				(Driver)	-	Rows	119.7	4	29.925	9.785	0.001	3.25
21				-		5	Columns	72.8	3	24.267	7,935	0.004	3,490
22				Tr	eatment		Error	36.7	12	3.058			
23					(Route)								
24					noute)		Total	229.2	19				

• $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4.$

3,0581

- H_1 : Not all travel time means are the same.
- The p-value is 0.004, reject the null hypothesis.
- We can conclude there is a difference in the mean travel times for the different routes.

Access the text alternative for these images.

Two-Way Analysis of Variance

• Example continued.

القعوق

1	A	В	C	D	E	F	G	H	1.	1	K	L	M
1													
2	1												
3		_	Rou	ites			Anova: Two-Factor	Without	Replicat	ion			
4	Driver	U.5 6	West End	Hickory !	St. Route 59								
5	Deans	18	17	21	22		SUMMARY	Count	Sum	Average	Variance		
б	Snaverly	16	23	23	22		Deans	4	78	19.50	5.67		
7	Ormson	21	21	26	22		Snaverly	4	84	21.00	11.33		
8	Zollaco	23	22	29	25		Ormson	4	90	22.50	5.67		
9	Filbeck	25	24	28	28		Zollaco	4	99	24.75	9.58		
10							Filbeck	4	105	26.25	4.25		
11													
12							U.S 6	S	103	20.60	13.30		
13							West End	5	107	21.40	7.30		
14							Hickory St.	5	127	25.40	11.30		
15							Route 59	5	119	23.80	7.20		
16													
17				-									
18				-	Block		ANOVA						
19							Source of Variation	55	df	MS	F	P-value	Fcrit
20					(Driver)	5	Rows	119.7	4	29.925	9.785	0.001	3.259
21						-	Columns	72.8	3	24.267	7.935	0.004	3.490
22				1	Treatment		Error	36.7	12	3.058			
23					(Route)								
24					(noute)		Total	229.2	19				

- $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5.$
- H_1 : Not all travel time means are the same.
- The p-value is 0.001, reject the null hypothesis.
- We can conclude there is a difference in the mean travel times for the different drivers.

Access the text alternative for these images.

Chapter 12 Practice Problems

LO12-1

A real estate developer is considering investing in a shopping mall on the outskirts of Atlanta, Georgia. Three parcels of land are being evaluated. Of particular importance is the income in the area surrounding the proposed mall. A random sample of four families is selected near each proposed mall. Following are the sample results. At the .05 significance level, can the developer conclude there is a difference in the mean income?

- a. What are the null and alternate hypotheses?
- b. What is the critical value?
- c. Compute the test statistic.
- d. Compute the *p*-value.
- e. What is your decision regarding the null hypothesis?
- f. Interpret the result.

Southwyck Area (\$000)	Franklin Park (\$000)	Old Orchard (\$000)
64	74	75
68	71	80
70	69	76
60	70	78
Anova (Data Single fator	

a) $H_0: \mathcal{M}_1 = \mathcal{M}_2 = \mathcal{M}_3$

HI: Not all sample have same mean

Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	4	262	65.5	19.66667		
Column 2	4	284	71	4.666667		
Column 3	4	309	77.25	4.916667		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	276.5	2	138.25	14.17949	0.001653	4.256495
Within Groups	87.75	9	9.75	V		~
Total	364.25	11				

b) critical value = 4,256

c) test statistic = 14.179

d) produce = 0.0016

e) Test static > critical value 14.179 > 4.256 reject Ho f) the average income in each earea are singificantly different

The following are three observations collected from treatment 1, five observations collected from treatment 2, and four observations collected from treatment 3. Test the hypothesis that the treatment means are equal at the .05 significance level.

- a. State the null hypothesis and the alternate hypothesis.
- b. What is the decision rule?
- c. Compute SST, SSE, and SS total.
- d. Complete an ANOVA table.
- e. Based on the value of the test statistic, state your decision regarding the null hypothesis.
- f. If the null hypothesis is rejected, can we conclude that treatment 1 and treatment 2 differ? Use the 95% level of confidence.

Treatment 1	Treatment 2	Treatment 3
8	3	3
11	2	4
10	1	5
	3	4
	2	

1-0.95

×=0.05

Anova: Single Factor							
Allera engler second							
SUMMARY			x				
Groups	Count	Sum	Average	Variance			
Column 1	3	29	9.666667	2.333333			
Column 2	5	11	2.2	0.7		•	
Column 3	4	16	4	0.666667			
ANOVA							
Source of Variation	SS	df	MS	F	P-value	F crit	
Between Groups	sf 107.2		AST 53.6	50.95775	1.23E-05	4.256494729	
	9.466667		1.051852		0.000012	<u>L</u>	
Total	116.6667	11	1				

a) Ho: Mi = Me = hz 11, : Not all the meas are equal

b) If test statistic (F) is > 4.26

rejea Ho

C)	SST = 107.2
	SSE = 9.47
	55 + 0 + al = 116.67

d)	Test sta	イ・ちちこ	>	Critical Valu
•		50.9		
	Reject			
		•		

فترم لتقة f) $(\bar{x}_1 - \bar{x}_2) \neq t \int MSE(\frac{1}{n_1} + \frac{1}{n_e})$ $(9.67 - 2.2) \pm 2.26 \int 1.052 (\frac{1}{3})$ 7.47 2 1.69 a,16 5.77 جوج افتلاف [6].4 , 5.77 + = 2.26

Chapin Manufacturing Company operates 24 hours a day, 5 days a week. The workers rotate shifts each week. Management is interested in whether there is a difference in the number of units produced when the employees work on various shifts. A sample of five workers is selected and their output recorded on each shift. At the .05 significance level, can we conclude there is a difference in the mean production rate by shift or by employee?

Employee	Units Produced Day	Units Produced Afternoon	Units Produced Night
Skaff	31	25	35
Lum	33	26	33
Clark	28	24	30
Treece	30	29	28
Morgan	28	26	27

SUMMARY	Count	Sum	Average	Variance		
Row 1	3	91	30.333	25.333		
Row 2	3	92	30.667	16.333		
Row 3	3	82	27.333	9.333		
Row 4	3	87	29.000	1.000		
Row 5	3	81	27.000	1.000		
Column 1	5	150	30.000	4.500		
Column 2	5	130	26.000	3.500		
Column 3	5	153	30.600	11.300		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Rows	33.733	4.000	8.433	1.552147239	0.276152	3.837853
Columns	62 522	2.000	21.267	5.754601227	0.028275	4.45897
Error	43.467	8.000	5.433			
Total	139.733	14.000				

for trealments (isso)

 $Ho: M_1 = J_{12} = J_{13}$

HI: Not all means are equal

F > Critical value

5,75 > 4.46

Reject Ho

there is difference in production by the Shife

for blocks_ (الصفرف)

Ho: Mi= M2= My= Mg H1: Not all means are equal F< Critical um 1.55 < 3.84 Do not reject 110 there is no difference in production by employee

Because learning changes everything.®

www.mheducation.com

© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.