Chapter 1 Coordinate Systems and Transformation الانفيم الاهدامه و التصويلات Physics Department – College of Science Al-Imam Muhammad Ibn Saud Islamic University Spherscal
(r a (f) = 0) cylindrical Carzesiun (r, ρ, z) (با ۱۲ مر)
المكاريتري

1- Vector Multiplication

1-1- Scalar Product (or dot product)

We can prove that $\overline{A \cdot B} = A_x B_x + A_y B_y + A_z B_z$

Some characteristics of scalar product: \blacklozenge Two vectors A and B are said to be orthogonal (or perpendicular) with each other if $A \cdot B = 0$ السكريجة \blacklozenge *A* \blacktriangle *B* \blacktriangle *A* (commutative law) ² $\sqrt{2}$

♦ $A \bullet (B \bullet C) = A \bullet B \bullet A \bullet C$ (distributive law) $A - A = |A| = A$

$$
\frac{1-\text{Vector Multiplication}}{2\cdot\frac{2}{5}\cdot\frac{1}{5}\cdot\
$$

We define the vector product of vectors A and B as

A B $|A||B|\sin a_n$

where a_n is a unit vector (i.e., $|a_n|$ 1) normal to the plane containing and *A B*

The direction of a_n is taken as the direction of the right thumb when the fingers of the right hand rotate from A to B as shown in figure.

1- Vector Multiplication

1-2- Vector Product (or Cross Product)

1- Vector Multiplication

1-2- Vector Product (or Cross Product)

We can prove that
$$
A \times B = \begin{vmatrix} a_x & a_y & a_z \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}
$$

 $A \times B = (A_y B_z - A_z B_y)a_x - (A_x B_z - A_z B_x)a_y + (A_x B_y - A_y B_x)a_z$

Cartesiun Coordinate $syslem(x,y,z)$ $A = (A_x, A_y, A_z)$
Component $\frac{\pi}{2}$ $A = (3, 2, 1)$ $\frac{1}{1}$
 $\frac{1}{1}$ = $3\hat{a}_{x} + 2\hat{a}_{y} + a_{z}$ $\overline{A} = 3\hat{x} + 2\hat{y} + \hat{z}$ $\hat{A} = 3\hat{i} + 2\hat{j} + \hat{k}$ $\overline{A}=(A_{x},A_{y},A_{z})$ $\overline{B}=(\beta_{x},\beta_{y},B_{z})$ $\overline{A+B} = (A_{x+}B_{x}, A_{y+}B_{y}, A_{z+}B_{z})$ $A = (3, 2, 1)$ $B = (5, 4, -6)$ $\widehat{A+B} = (3, 6, -5)$
 $8\hat{x} + 6\hat{y} - 5\hat{z}$ Magnitude aux dées justices $A=(3,2,1) = 3\hat{x}+2\hat{y}+1\hat{z}$ $|\vec{A}| = \sqrt{3^2 + 2^2 + 1^2} = \sqrt{14}$

حرق حرّب المكبهات
ل) العرّب قفيد مانت $C\widetilde{A}=(cA_{x},cA_{y},cA_{z})$ المفرد عصدد كمامت $\vec{A} = 3\hat{x} + 2\hat{y} + \hat{z}$ $3\vec{A} = 9\hat{x} + 6\hat{y} + 3\hat{z}$ (dot) Scalar product voire viel 2 $\overrightarrow{A} \cdot \overrightarrow{B}$
(\overrightarrow{A}) aprile and you up the value $\widehat{A} = (A_x, A_y, A_z)$ $\mathbb{B} = (B_x, B_y, B_z)$ $\overline{A} \cdot \overline{B} = AxBx + AyBy + AzBz$
 $\overline{A} = (3, 1, 5)$ $\overline{B} = (1, -1, 2)$ $\overline{A} \cdot \overline{B} = 3x1 + 1x(-1) + 5x2$ $\overline{A} \cdot \overline{B} = 12$ $3\frac{16}{6}$ $\frac{7}{6}$ $= 2\hat{x} + 3\hat{y} - 4\hat{z}$ $\qquad \qquad \vec{D} = \hat{x} + 2\hat{y} - k$ $\overline{C_1}$ \overline{D} = (2x1) + (3x2) + (-4x-1) = 12 رفائق العزب الذقيقين
- حاصي سريليه $\overline{\hat{A}}.\overline{\hat{B}} = \overline{\hat{B}}.\overline{\hat{B}}$ 2- الخاصة لتوزيقة $A \cdot (B + c) = \overline{A \cdot B} + \overline{A \cdot c}$

 i () ii i i j j j k j k j k j k j k j k k j k j k k j k k j $A.B = 0$ $\frac{1}{1^{8}}$ $a_x \cdot a_y = 0$ $\overline{A} \cdot B = o$ $ax - az = 0$ $ay \cdot a z = 0$ اکبر ماکین عناما کلّون کرّاردہ ے V_{c} يكون الري النقض $\hat{a}_x \cdot \hat{a}_x = 1$ $\frac{\hat{x}}{\hat{x}}$ $\hat{a}_y \cdot a_y = 1$ $a_{2} a_{2} = 1$ $A \cdot A = |A|^2 = A^2$ -5 $\hat{A} = 3\hat{q} + 2\hat{q} + 2\hat{q}$ $\hat{A} = 3\hat{q} + 2\hat{q} + 2\hat{q}$ $\overrightarrow{A} \cdot \overrightarrow{A} = (\sqrt{3^2 + 2^2 + 2^2})^2 = 17$ حرايقه اخرى كرن Cross Product 8^{195} $\overline{A} \cdot \overline{B} = |A||B| \cos \Theta$ $B = 2ⁿ$ $A.B = (5)(2)(cos 60)$ $\overline{5}$

المحزب الايَ هي (التقاصي) بنايخ النف بكوت منجه له
هقدار وايان (AxB) المعتجه النانج فذر لهزن كمور محموري في كل فن A و B Axx
B
A
AxBl = IAIIBl SinO $\sqrt{30}$
 $\sqrt{30}$
 $\sqrt{18}=3$
 $\sqrt{18}=3$ Parallel crypte and is the parallel
Ax B = 0 $AxB = c$ $90 = 0$ $i395i$ $v_i \neq 0$
 $4 \leq i \leq 9$ $\overline{A} \times \overline{B} = \begin{vmatrix} a_x & a_y & a_z \\ a_x & a_y & a_z \\ a_x & a_y & a_z \end{vmatrix}$ $(AyBz-AzBy)\ddot{a}_x - (AxBz-AzBx)\ddot{a}_y + (AxBy-AyBz)\dot{a}_z$

 $\frac{\partial u}{\partial x}$ A = $2\hat{a}_x - 3\hat{a}_y + \hat{a}_z$ $B = 4\hat{a}_{x} + 5\hat{a}_{y} + 10\hat{a}_{z}$

= $(-30 - 5)\hat{a}_x - (20 - 4)\hat{a}_y + (10 - -12)\hat{a}_z$ $A \times B = -35 \hat{a_x} - 16 \hat{a_y} + 22 \hat{a_z}$

المضربت يتحريه بمرتكا المحاس

 $\overline{A} \times \overline{B} = -\overline{B} \times \overline{B}$

 $a_{x} \times a_{x} = \hat{a}_{y} \times \hat{a}_{y} = \hat{a}_{z} \times \hat{a}_{z} = 0$

2-1- Cartesian Coordinates (*x,y,z***)**

in the *xy*-plane. $-$) *z* is the same as in Cartesian system.

points in the direction of increasing ρ , \vec{a}_{ϕ} in the direction of increasing ϕ , and \vec{a}_z in the positive z-direction. *a* \vec{a}_{ϕ}

2-2- Circular Cylindrical Coordinates (ρ, ϕ, z)

A vector \vec{A} in cylindrical coordinates can be written as

$$
\vec{A} = (A_{\rho}, A_{\phi}, A_{z}) \quad or \quad \vec{A} = A_{\rho}\vec{a}_{\rho} + A_{\phi}\vec{a}_{\phi} + A_{z}\vec{a}_{z}
$$

Magnitude of the vector \vec{A} is written as

$$
|\vec{A}| = \sqrt{(A_{\rho})^2 + (A_{\phi})^2 + (A_{z})^2}
$$

$$
A = A_x \alpha_x + A_y \alpha_y + A_z \alpha_z
$$

$$
A = A_y \alpha_y + A_y \alpha_y + A_z \alpha_z
$$

 \mathbf{r} is defined as the distance from the origin to point P or the radius of a sphere centered at the origin and passing through *P*, -) *θ* (called the colatitude) is the angle between the positive *z*-axis taken as reference and the line from the origin to P, \rightarrow ϕ is the same as defined in cylindrical system.

2-3- Spherical Coordinates System (*r,θ,***)**

$$
\vec{a}_r \times \vec{a}_r = \vec{a}_\theta \times \vec{a}_\theta = \vec{a}_\phi \times \vec{a}_\phi = 0
$$
\n
$$
\vec{a}_r \times \vec{a}_\theta = \vec{a}_\phi
$$
\n
$$
\vec{a}_\theta \times \vec{a}_\phi = \vec{a}_r
$$
\n
$$
\vec{a}_\phi \times \vec{a}_r = \vec{a}_\theta
$$

A vector \vec{A} in spherical coordinates can be written as

$$
\vec{A} = (A_r, A_\theta, A_\phi) \quad or \quad \vec{A} = A_r \vec{a}_r + A_\theta \vec{a}_\theta + A_\phi \vec{a}_\phi
$$

Magnitude of the vector \vec{A} is written as

$$
|\vec{A}| = \sqrt{(A_r)^2 + (A_\theta)^2 + (A_\phi)^2}
$$

3- Relationships between Cartesian and cylindrical systems

$$
\frac{x = \rho \cos \phi, \quad y = \rho \sin \phi}{\rho = \sqrt{x^2 + y^2}, \quad \phi = \tan^{-1} \left(\frac{y}{x}\right) + n\pi} \text{ where } n = 0, 1 \text{ or } 2 \text{ and } 0 \le \phi < 2\pi
$$
\n
$$
\tan^{-1} \left(\frac{y}{x}\right) \quad \text{if } x \ge 0 \text{ and } y \ge 0
$$
\n
$$
\phi = \begin{cases}\n\tan^{-1} \left(\frac{y}{x}\right) + \pi & \text{if } x < 0 \\
\tan^{-1} \left(\frac{y}{x}\right) + 2\pi & \text{if } x \ge 0 \text{ and } y < 0 \\
\frac{\pi}{2} & \text{if } x = 0 \text{ and } y > 0 \\
\frac{3\pi}{2} & \text{if } x = 0 \text{ and } y < 0 \\
\text{undefined} & \text{if } x = 0 \text{ and } y = 0\n\end{cases}
$$
\n14

العقويل سيغ المنطام الكاريون و الارطواني $P(x, y, z)$ $P(y, \phi, z)$ كا حاجه لدتويل ح $X = P cos \theta$ $Y = P \sin \varphi$ Write the cylindrical coordinate $B = \left(2, \frac{\pi}{6}, 3\right)$ into Cartesian Cor.. 092 x y 2
B= (2, 1, 3) B= (1,73, 1, 3) $X = D cos \phi$
= 2 Cos II = 1.73
= 2 Sin II = 1 $P(x,y,z) \longrightarrow P(P,\psi,z)$ $0 = \sqrt{x^2 + y^2}$ $\qquad \qquad \psi = \tan^{-1}(\frac{y}{x})$ Write the Cartesian location (3, 4, 2) in Cylindvicent System p, $9, 2$
(3, 4, 2) (5, 53, 2)

 $\sqrt{2} = \sqrt{3^2 + 4^2} = 5$ $\theta = 6an^{-1}(\frac{9}{x}) = 6an^{-1}(\frac{4}{3}) = 53$ aredi all, l'in Q $i\in \mathbb{Z}$ ادا كانت x و y موقيه ناعتم لا عا به نفرين π ، اذاكان كم سالبة نجم زاديه ١٤٥ او $2H$) 360 para $2H$ of $2H$ $2H$ 360 k $2H$ $9 = \frac{\pi}{2}$ ages x a
 $\theta = \frac{3\pi}{2}$ and x=0 اذا كانياً i i j j j $\frac{1}{2}$ \sim $(D,0,2)$ (X, Y, Z) متحبها ز, لوجرة (7, ۶٫۷) $(0, 9, 7)$ e-2, $(0, 0)$ a_{*} = $cos \theta a_{P}$ - $sin \theta a_{P}$ a_{f} = Cos $\mathcal{P}a_{x}$ + Sin $\mathcal{P}a_{y}$ $\alpha y = sin \phi$ ast Cos ϕ ap α g = -sin φ a_{κ} +cos φ a, $a_7 = a_2$ $a_z = a_z$

3- Relationships between Cartesian and cylindrical systems

Example: Given a point P(-2,6,0) and a vector $\vec{A} = y\vec{a}_x + x\vec{a}_y$ $= va_{+} +$ a) Express P and \vec{A} in cylindrical coordinates system

3- Relationships between Cartesian and cylindrical systems

$$
\rho = \sqrt{x^2 + y^2} = \sqrt{4 + 36} = 6.32m
$$

\n
$$
\phi = \tan^{-1}\left(\frac{y}{x}\right) + 180^\circ = \tan^{-1}\left(\frac{6}{-2}\right) + 180^\circ = 108.43^\circ
$$

\nThus, $P(-2,6,0) = P(6.32,108.43^\circ,0)$
\n
$$
\vec{A} = y\vec{a}_x + x\vec{a}_y
$$

\n
$$
\vec{A} = \rho \sin \phi (\cos \phi \vec{a}_\rho - \sin \phi \vec{a}_\phi) + \rho \cos \phi (\sin \phi \vec{a}_\rho + \cos \phi \vec{a}_\phi)
$$

\n
$$
\vec{A} = (\rho \sin \phi \cos \phi + \rho \cos \phi \sin \phi) \vec{a}_\rho + (-\rho \sin^2 \phi + \rho \cos^2 \phi) \vec{a}_\phi
$$

3- Relationships between Cartesian and cylindrical systems

b) Evaluate \vec{A} at P in the Cartesian and cylindrical system

In Cartesian system : $\vec{A} = y\vec{a}_x + x\vec{a}_y$

 $P(-2,6,0)$: $\vec{A} = 6\vec{a}_x - 2\vec{a}_y$ at P in Cartesian system $=$ OU $_{-}$ $-$

In cylindrical system:

$$
\vec{A} = (\rho \sin \phi \cos \phi + \rho \cos \phi \sin \phi)\vec{a}_{\rho} + (-\rho \sin^{2} \phi + \rho \cos^{2} \phi)\vec{a}_{\phi}
$$

At $P(6.32,108.43^{\circ},0)$: $\rho = 6.32m$, $\sin \phi = \frac{6}{\sqrt{40}}$, $\cos \phi = \frac{-2}{\sqrt{40}}$

 $\vec{A} = -3.794 \vec{a}_{\rho} - 5.060 \vec{a}_{\phi}$ at P in cylindrica 1 system $=-3.794a$. $-$

Example: Given a point P(-2,6,0) and a vector $\vec{A} = y\vec{a}_x + x\vec{a}_y$ a) Express P and \overline{A} in cylindrical coordinates system $P(-2, 6, 0)$ - $P(0, 9, 2)$ $P = \sqrt{x^2+y^2} = \sqrt{(2)^2+6^2} = 6.32$ $\mathcal{G} = \tan^{-1}(\frac{y}{x}) = \tan^{-1}(\frac{6}{-2}) = -71.5 + 180$
= 108.4° $P(6.32, 108.4^{\circ}, 0)$ $\overline{A} = y\overline{a}_x + x\overline{a}_y$ $\overrightarrow{A} = \rho$ Sin φ (Cos φ G, -Sin φ ag) + ρ cos φ (Sin φ a, + cos φ ag) \overline{A} = \mathcal{S} sin \mathcal{G} COS \mathcal{G} la, \mathcal{S} sin \mathcal{G} la, \mathcal{G} la, \mathcal{G} COS \mathcal{G} lsin \mathcal{G} la, \mathcal{G} COS \mathcal{G} $\vec{A} = (Psin \theta cos \theta + Pcos \theta sin \theta) \hat{a}_{p} + (-Psin^{2}\theta + Pcos^{2}\theta) \hat{a}_{q}$ b) Evaluate \vec{A} at P in the Cartesian and cylindrical system $(6.32, 108.43, 0)$ $(-2, 6, 0)$ $Cov+eSLOV$ $\vec{A} = y \hat{a}_x + x \hat{a}_y = 6 \hat{a}_x - 2 \hat{a}_y$

Cylindrical 2 Psin fcosf = (Psingcosg + Pcosgsing) â + (=Psing + Pcosg) à 108.43 6.32 = 2 (6.32 Sin 108.43 Cos 108.43) \hat{a}_{p} + (-6.32 Sin 108.43 +6.32
Cos² 108.43) \hat{a}_{p} $\tilde{A} = -3.744\hat{a} - 5.06\hat{a}g$

3- Relationships between Cartesian and cylindrical systems

4- Relationships between spherical and cylindrical systems

4- Relationships between spherical and cylindrical systems

التعويل من كروى الماسطون والعك

 $(r, \phi, \Theta) \longrightarrow (P, \phi, z)$

 $(J \cdot \varphi, z)$ - \bullet (r, ρ , θ)

 $Y = \int \rho^2 + Z^2$ $ar = SnBa_v + TsBa₃$ $a_{\theta} = \cos \theta \ \hat{a}_{\rho} - \sin \theta \ \hat{a}_{\epsilon}$ $\theta = tan^{-1}(\frac{\rho}{2})$ $a_p - a_p$ $\mathcal{J}=\mathcal{P}$

Example :-

Convert from Glindrical to spherical $(1, \frac{p}{2}, 1) \rightarrow (\sqrt{2}, \frac{p}{2}, 15)$

 $Y = \int P^2 + 2^2 = \int 1^2 + 1^2 = \sqrt{2}$ $\theta = \tan^{-1}(\frac{\rho}{2}) = \tan^{-1}(\frac{1}{1}) = \frac{\pi}{4} = 45$

5- Relationships between spherical and Cartesian systems

$$
\rho^2 = x^2 + y^2 \qquad r = \sqrt{\rho^2 + z^2}
$$

$$
r = \sqrt{x^2 + y^2 + z^2}
$$

$$
\theta = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right) + n\pi \text{ where } n = 0 \text{ or } 1 \text{; and } 0 \le \theta \le \pi
$$

$$
\phi = \tan^{-1}\left(\frac{y}{x}\right) + n\pi \text{ where } n = 0 \text{ or } 1 \text{ or } 2 \text{; and } 0 \le \phi < 2\pi
$$
\n
$$
0 \left(\frac{y}{x}\right)^{p}
$$

التومي في نفاح كاريتري الى كردى لعلى $66.9.0)$ (x,y,z) $\hat{\alpha}_{r}$ = sin θ cos $\oint_{0}^{\hat{\alpha}}$ + sin θ sin $\oint_{0}^{\hat{\alpha}}$ + $\cos\theta$ $\hat{\alpha}_{z}$ $Y = \sqrt{x^2 + y^2 + z^2}$ \hat{a}_{g} = Cosocos \hat{a}_{r} + (oso sin \hat{p} a_y-sinoq $\theta = \tan^{-1}\left(\frac{\sqrt{x^2+y^2}}{2}\right)$ \hat{a}_{ϕ} = -Sin ϕ α_{x} + Cos ϕ α_{y} $P = \tan^{-1}(\frac{y}{x})$ اللقويل صن كروي دى كاربتز ك $(P,\varphi,\Theta) \longrightarrow (x,y,z)$ $x = rsin\theta cos\phi$ \hat{a}_{λ} = sinOcos $\rho \hat{a}_{r+}$ cosOcos $\rho \hat{a}_{\theta}$ -sin $\rho \hat{a}_{\theta}$ $Y = S_i \cap B_j \cap \emptyset$ \hat{a}_{γ} = singsin $\rho \hat{a}_{r}$ + cososin $\varphi \hat{a}_{\rho}$ + cos $\rho \hat{a}_{\rho}$ $Z = Y cos \theta$ $a_{z} = \cos \theta \hat{a}_{r} - \sin \theta \hat{a}_{\theta}$

5- Relationships between spherical and Cartesian systems

$$
\theta = \begin{cases}\n\tan^{-1}\left(\frac{\sqrt{x^2 + y^2}}{z}\right) & \text{if } z > 0 \\
\tan^{-1}\left(\frac{\sqrt{x^2 + y^2}}{z}\right) + \pi & \text{if } z < 0 \text{ and } \sqrt{x^2 + y^2} \neq 0 \\
\frac{\pi}{2} & \text{if } z < 0 \text{ and } \sqrt{x^2 + y^2} = 0 \\
\frac{\pi}{2} & \text{if } z = 0 \text{ and } \sqrt{x^2 + y^2} \neq 0 \\
\text{Undering the right, we get} \\
\text{Under
$$

5-Relationships between spherical and Cartesian systems

$$
x = \rho \cos \phi \qquad \rho = r \sin \theta
$$

$$
x = r \sin \theta \cos \phi
$$

$$
y = \rho \sin \phi \qquad \rho = r \sin \theta
$$

$$
y = r \sin \theta \sin \phi \qquad z = r \cos \theta
$$

5-Relationships between spherical and Cartesian systems

$$
\vec{a}_{\phi} = -\sin \phi \, \vec{a}_{x} + \cos \phi \, \vec{a}_{y}
$$

5-Relationships between spherical and Cartesian systems

Consider a point P located in space, and consider the direct arrow extending from the origin to this point P. This arrow is known as the position vector \vec{r} . A position vector is an alternative way to denote the location of a point P in space.

3-1- Cartesian coordinates system

3-3- Spherical coordinates system

 $\vec{a}_r(\theta, \phi) = \sin \theta \cos \phi \, \vec{a}_x + \sin \theta \sin \phi \, \vec{a}_y + \cos \theta \, \vec{a}_z$
 $d\vec{a}_r = \frac{\partial \vec{a}_r}{\partial \theta} d\theta + \frac{\partial \vec{a}_r}{\partial \phi} d\phi$ (θ,ϕ) = sin θ cos $\phi \vec{a}_x$ + sin θ sin $\phi \vec{a}_y$ + cos θ

$$
d\vec{a}_r = \frac{\partial \vec{a}_r}{\partial \theta} d\theta + \frac{\partial \vec{a}_r}{\partial \phi} d\phi
$$

 θ sin $\phi \vec{a}_x + \sin \theta \cos \phi \vec{a}_y d\phi$ $d\vec{a}_r = (\cos\theta\cos\phi\vec{a}_r + \cos\theta\sin\phi\vec{a}_r - \sin\theta\vec{a}_r)d\theta$ $(-\sin\theta\sin\phi\vec{a}_x + \sin\theta\cos\phi\vec{a}_y)$ $\vec{a}_r = (\cos \theta \cos \phi \vec{a}_x + \cos \theta \sin \phi \vec{a}_y - \sin \theta \vec{a}_z)$ $-\sin \theta \sin \phi a$. + $=$ (cos θ cos ϕa + cos θ sin ϕa - sin θa) d θ +

 $\sin \theta d\phi$ ($-\sin \phi \vec{a}_x + \cos \phi \vec{a}_y$) $\phi_{r} = d\theta(\cos\theta\cos\phi\vec{a}_{x} + \cos\theta\sin\phi\vec{a}_{y} - \sin\theta\vec{a}_{z})$ $\theta d\phi$ ($-\sin \phi \vec{a}_x + \cos \phi \vec{a}$ $d\vec{a}_r = d\theta(\cos\theta\cos\phi\vec{a}_r + \cos\theta\sin\phi\vec{a}_r - \sin\theta\vec{a}_r) +$ $-\sin \phi a$ +

 $d\vec{a}_r = d\theta \vec{a}_\theta + \sin \theta \, d\phi \vec{a}_\phi$

$$
\overrightarrow{d\vec{r}} = d\vec{l} = dr\vec{a}_r + r d\theta \vec{a}_\theta + r \sin \theta d\phi \vec{a}_\phi
$$

Defferential element in

8- Dot Notation

Dot Notation:
$$
\frac{dx}{dt} = \dot{x}
$$
, $\frac{dy}{dt} = \dot{y}$, $\frac{dz}{dt} = \dot{z}$, $\frac{d^2z}{dt^2} = \ddot{z}$, $\frac{d\rho}{dt} = \dot{\rho}$
 $\frac{d\theta}{dt} = \dot{\theta}$, $\frac{dr}{dt} = \dot{r}$, $\frac{d\phi}{dt} = \dot{\phi}$, $\vec{v} = \frac{d\vec{r}}{dt} = \dot{\vec{r}}$

We will use this <u>dot notation</u> extensively. It means $y = \frac{dy}{dx}$ **differentiation with respect to time,** *t* , **only**.

$$
\frac{dy}{dx} = y' \neq \dot{y}
$$
\n
$$
\frac{y'}{y} = \frac{y}{\frac{y'}{y}} = \frac{y}{\frac{y'}{y}}
$$

41

 $\mathbf{u} = \mathbf{v}$