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1- Vector Multiplication

1-1- Scalar Product (or dot product)

Consider                                       and

We define the scalar product (or dot product) of vectors     and      as 

zzyyxx aAaAaAA zzyyxx aBaBaBB
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where θ is the smaller angle between       
and
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1- Vector Multiplication

1-1- Scalar Product (or dot product)

zzyyxx BABABABAWe can prove that 

Some characteristics of scalar product:
♦ Two vectors     and      are said to be orthogonal (or perpendicular)
with each other if 

♦

♦

♦

0BA

A B

ABBA (commutative law) 
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CABACBA )( (distributive law) 
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1- Vector Multiplication

1-2- Vector Product (or Cross Product)

We define the vector product of vectors     and      asA B

naBABA sin

where      is a unit vector (i.e.,           ) normal to the plane containing 
and

The direction of       is taken as the direction of the right thumb when
the fingers of the right hand rotate from     to    as shown in figure.

na 1na
A B

na
A B
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1- Vector Multiplication
1-2- Vector Product (or Cross Product)

and its magnitude is written as 

sinBABA

which is the area of the parallelogram
formed by     and     (see Figure) A B

A

B BAArea
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1- Vector Multiplication
1-2- Vector Product (or Cross Product)
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2- Coordinate Systems

2-1- Cartesian Coordinates (x,y,z)
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A vector     in Cartesian coordinates can be written as

zzyyxxzyx aAaAaAAorAAAA
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P' is the projection

of P on the plane-xy



2- Coordinate Systems

Magnitude of the vector    is written as A


222 )()()( zyx AAAA 


2-1- Cartesian Coordinates (x,y,z)

2-2- Circular Cylindrical Coordinates (,,z)
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z

-) ρ is defined as the distance from the

origin to point P' or the radius of a

cylinder passing through P (the z-axis is

its axis of symmetry)

-)  called the azimuthal angle, is

measured from the positive x-axis taken

As reference and the line from origin to P' 

in the xy-plane.

-) z is the same as in Cartesian system. 
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2- Coordinate Systems

2-2- Circular Cylindrical Coordinates (,,z)
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points in the direction of increasing ρ,      in the direction of 

increasing , and      in the positive z-direction. 
a


a


za
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2- Coordinate Systems

zzz aAaAaAAorAAAA


  ),,(

2-2- Circular Cylindrical Coordinates (,,z)

A vector      in cylindrical coordinates can be written asA


Magnitude of the vector    is written as A


222 )()()( zAAAA  
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2- Coordinate Systems

2-3- Spherical Coordinates System (r,θ,)
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-) r is defined as the distance from the origin to point P or the radius

of a sphere centered at the origin and passing through P,

-) θ (called the colatitude) is the angle between the positive z-axis

taken as reference and the line from the origin to P,

-)  is the same as defined in cylindrical system.
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2- Coordinate Systems

2-3- Spherical Coordinates System (r,θ,)
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2- Coordinate Systems

0  aaaaaa rr


2-3- Spherical Coordinates System (r,θ,)
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A vector     in spherical coordinates can be written as A


Magnitude of the vector    is written asA
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3- Relationships between Cartesian and 

cylindrical systems
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3- Relationships between Cartesian and 

cylindrical systems
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Example: Given a point P(-2,6,0) and a vector                          
yx axayA




a) Express P and     in cylindrical coordinates systemA




3- Relationships between Cartesian and 

cylindrical systems
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3- Relationships between Cartesian and 

cylindrical systems
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b) Evaluate     at P in the Cartesian and cylindrical systemA


yx axayA


 :system Cartesian In
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In cylindrical system:







3- Relationships between Cartesian and 

cylindrical systems
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4- Relationships between spherical and 

cylindrical systems
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4- Relationships between spherical and 

cylindrical systems
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5- Relationships between spherical and Cartesian 

systems
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5- Relationships between spherical and Cartesian 

systems
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5-Relationships between spherical and Cartesian 

systems
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5-Relationships between spherical and Cartesian 

systems
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â

â
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zâ





ya


xa


a


a


zr aaa


  cossin 

yx aaa


 sincos 

zyxr aaaa


 cos)sin(cossin 

zyxr aaaa


 cossinsincossin 

zaaa


  sincos 

yx aaa


 sincos 

zyx aaaa


 sin)sin(coscos 

zyx aaaa


 sinsincoscoscos 

yx aaa


 cossin 



5-Relationships between spherical and Cartesian 

systems
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â

râ
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6-Vector position and Differential element in 

length

Consider a point P located in space, and consider the direct arrow

extending from the origin to this point P. This arrow is known as the

position vector   . A position vector is an alternative way to denote

the location of a point P in space. 

r


z

y

x

r


P

O

L

26



6- Vector position and Differential element in 

length

3-1- Cartesian coordinates system

z

y

x

),,( zyxP

)0,,( yxP

r


xax


yay


zaz


z

y

x

P

O

1r


2r


L

12 rr




T

zyx azayaxr




rrr


 12

z

y

x

P

O

1r


2r


d

ld


L
),.,.(0When 12 ldrdreirrr




zyx adzadyadxldrd




27



6-Vector position and Differential element in 

length

3-2- Circular cylindrical coordinates system
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6-Vector position and Differential element in 

length

3-3- Spherical coordinates system
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6-Vector position and Differential element in 

length
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7-Vector Position and Differential Element in 
Length

7-4- Polar coordinate system
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8- Dot Notation

41

Dot Notation: 

We will use this dot notation extensively.  It means

differentiation with respect to time, t , only.
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