

Logic: Propositional Logic Exercises

Acknowledgment: All course slides are either referenced to Rosen Book online presentations (with certain amendments) or are personally developed by the instructors.

Exercise 2 pp 13 @[KB 8ed]

2. Which of these are propositions? What are the truth values of those that are propositions?

- 3'a) Do not pass go. X Not proposition
- b) What time is it? No 🗲

c) There are no black flies in Maine. γes d) 4 + x = 5. NO X F

e) The moon is made of green cheese. Yes F

f) $2^n \ge 100$. 100×100

لعى 5-7. What is the **negation** of each of these propositions?

- 5b) There is من pollution in New Jersey. مناك تلوت في منوجير الم NOL
- 6a) Jennifer and Teja are friends.
 6b) There are <u>13 items</u> in a baker's dozen. Nore than 13 are not 13
- 6c) Abby sent more than 100 text messages yesterday.
- 7c) $7 \cdot 11 \cdot 13 \neq 999$.
 - 7d) Diane rode her bicycle 100 miles on Sunday.

> less than 100 > more than 100

1445 - First Semester

IF and only If

Statement)

14. Let p, q, and r be the propositions 4 . p: You have the flu. q: You miss the final examination. r: You pass the course. Express each of these propositions as an English sentence. b) $\neg q \leftrightarrow r$: You won't miss the final examination if and only if you pass the course.(Bib) $\neg q \leftrightarrow r$ conditional statement) $T_{c} q \rightarrow \neg r$ c) $q \rightarrow \neg r$: If you miss the examination then you will be failing the course.(Implication e) $(p \rightarrow \neg r) \lor (q \rightarrow \neg r)$ e) $(p \rightarrow \neg r) \vee (q \rightarrow \neg r)$: If you have the flu then you'll not pass the course OR If you mise the final examination then you'll fail the course.((P implies not R) OR (Q implies not R))

Exercise 14 pp 16 @[KR 8ed]

4

Exercise 16 pp 14 @[KR 8ed]

16. Let p, q, and r be the propositions

- p: You get an A on the final exam.
- q: You do every exercise in this book.
- r: You get an A in this class.

Express the following propositions using **propositional algebra**.

- a) You get an A in this class, but you do not do every exercise in this book.
- c) To get an A in this class, it is <u>necessary</u> for you to get an A on the final.
- f) You will get an A in this class if and only if you either do every exercise in this book or you get an A on the final.

18-20. **Determine** whether each of these statements is **true or false**.

- 18a) 2 + 2 = 4 if and only if 1 + 1 = 2. $T \leftrightarrow T = T$ 18d) 0 > 1 if and only if 2 > 1. $F \leftrightarrow T = F$
- 19c) If 1 + 1 = 3, then 2 + 2 = 5. $F \longrightarrow F = T$
- 20d) If 1 + 1 = 2, then dogs can fly. $T \longrightarrow F = F$

 $P \rightarrow \P$ $q \rightarrow P$ $\neg \P \rightarrow \neg P$ $\neg P \rightarrow - \Psi$ 29-30. <u>State</u> the <u>converse</u>, contrapositive, and inverse</u> of each of these conditional statements.

29a) If it snows today, I will ski tomorrow.

30b) I go to the beach whenever it is a sunny summer day.

30c) When I stay up late, it is necessary that I sleep until noon.

Exercise 29-30 pp 16 @[KR 8ed]	جامعة ام القرح UMM AL-QUIA UNIVERSITY
29-30. <u>State</u> the converse, contrapositive, and inverse of each of th conditional statements. ا	السوال فكتو
 29a) 1.If it snows tonight, then I will stay at home. 30b) I go to the beach whenever it is a sunny summer day. 30c) When I stay up late, it is necessary that I sleep until noor. 	و کل بنور الوادی .
1.If it snows tonight, then <u>I will stay at hom</u> e.	
contrapositive, =I <u>f I will not stay at home then</u> it <u>does not snow</u> t <u>onight</u> . inverse =If it does n <u>ot snow tonight</u> , then I will not stay at home.	
2.I go to the beach whenever it is a su <u>nny summ</u> er day.	
converse = It is a sunny summer day whenever I go to the beach. contrapositive, =it is not a sunny summer day whenever I do not go to the beach.	
inverse =I do not go to the beach whenever it is not a sunny summer day.	
3. we can re write the statement like if i stay up late then i sleep until noon .	
converse : <u>if i sleep until noon</u> then <u>i stay up late</u> . contrapositive : if <u>i dont sleep until noon</u> then i <u>did not stay up late</u> inverse : if i didnt stay up late then i dont sleep until noon	

عرر المعنوص 31-32. <u>How many rows</u> appear in a t<u>ruth tab</u>le for each of these compound propositions?

31a) $p \rightarrow \neg p$. $2^n = 2' = 2$ 32c) $(p \rightarrow r) \lor (\neg s \rightarrow \neg t) \lor (\neg u \rightarrow v)$. $2^6 = 64$

33-38. <u>Construct</u> a truth table for each of these compound propositions.

34c) p ⊕ (p ∨ q).
36c) p ⊕ ¬ø. %
38e) (p ∨ q) ∧ ¬r

P 🕀	$(\bigvee q)$ $\frac{p q}{T T}$ $T F$ $F T$ $F F$		$p \oplus (p \lor q)$ F F T F	PD-P	
POP	-, 9 <u>p</u> 1 7 F F	F T F T F	$\frac{p \oplus \neg q}{T}$ F F T	F F	PPO-P FT TT
	T T T T T T T T T T T T T T T T T T T	$\begin{array}{c c} & - & \checkmark \\ \hline r & - & \hline r \\ \hline r & F \\ \hline F & T \\ \hline \end{array}$	$\begin{array}{c} \underline{p \lor q} \\ \mathrm{T} \\ \mathrm{F} \\ \mathrm{F} \end{array}$	$\begin{array}{c} (p \lor q) \land \neg r \\ F \\ T \\ F \\ T \\ F \\ T \\ F \\ T \\ F \\ F$	

Exercise 6 pp 38 @[KR 8ed]

استحذم جمول العدق لا تبات عَاجين دي مررسان 6. <u>Use</u> a truth table to verify the first De Morgan law.

 $\neg(p \land q) \equiv \neg p \lor \neg q.$

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \vee \neg q$
Т	Т	T.	F	\mathbf{F}	\mathbf{F}	\mathbf{F}
Т	\mathbf{F}	F	Т	\mathbf{F}	Т	Т
\mathbf{F}	Т	F	Т	Т	\mathbf{F}	Т
\mathbf{F}	F	F	Т	т	т	т

Exercise 8 pp 38 @[KR 8ed]

8. <u>Use</u> De Morgan's laws to <u>find</u> the <u>negation</u> of each of the following statements. b) Yoshiko knows Java and calculus. $\neg (J \land C) = \neg J \lor \neg C$ d) Rita will move to Oregon or Washington. $\neg (O \lor W) = \neg O \land \neg W$

Yoshiko does not know Java or does not know calculus.

Rita will not move to Oregon and will not move to Washington.

Exercise 13 pp 38 @[KR 8ed]

13. <u>Show</u> that each of these conditional statements is a tautology without using truth tables. b) $p \rightarrow (p \lor q)$.

b) $p \rightarrow (p \lor q)$. f) $\neg (p \rightarrow q) \rightarrow \neg q$.

b) $P \rightarrow (PVQ)$

 $= \frac{1}{2} \frac{$

 $\neg \neg (\rho \rightarrow q) \vee \neg q$

 $(P \rightarrow q) \vee \neg q$

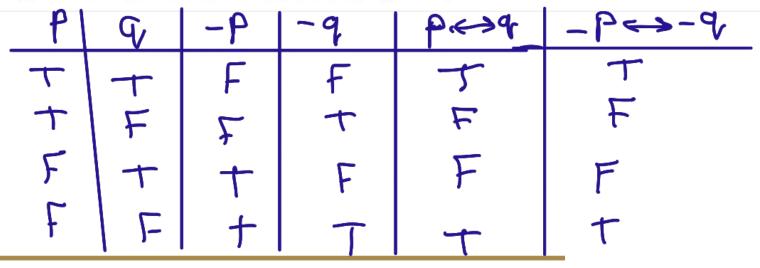
7PV9, V-9

-PVT

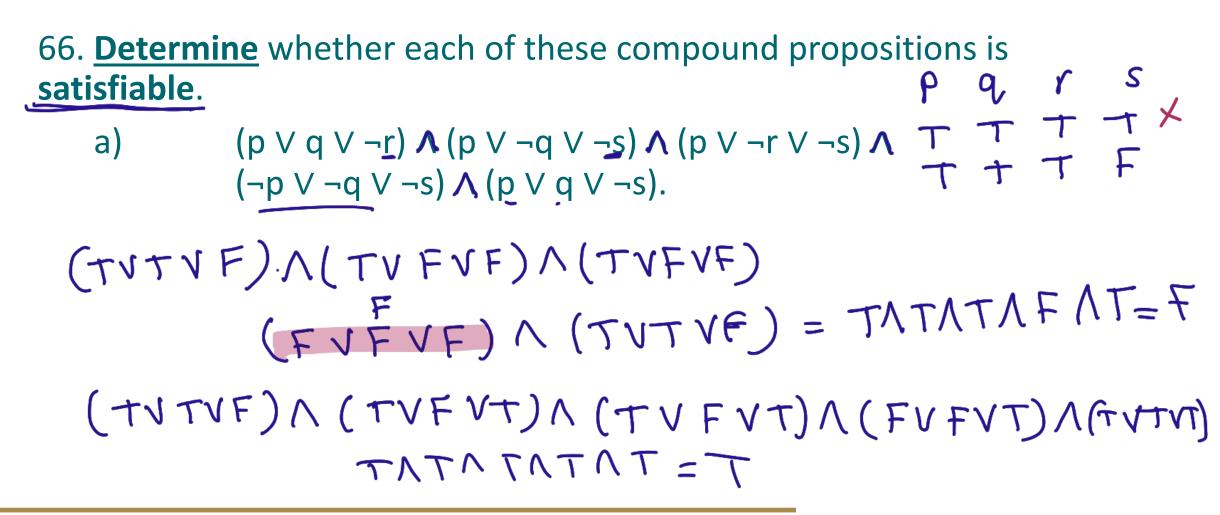
26. <u>Show</u> that $(p \rightarrow q) \land (p \rightarrow r)$ and $p \rightarrow (q \land r)$ are **logically equivalent**.

$$(P \rightarrow a) \land (P \rightarrow r)$$

$$(-P \vee q) \land (-P \vee r)$$


$$-P \vee (q \land r)$$

$$P \longrightarrow (q \land r)$$


32. <u>Show</u> that $p \leftrightarrow q$ and $\neg p \leftrightarrow \neg q$ are **logically equivalent**.

We know that $p \leftrightarrow q$ is true precisely when p and q have the same truth value. But this happens precisely when $\neg p$ and $\neg q$ have the same truth value, that is, $\neg p \leftrightarrow \neg q$.

Exercise 66 pp 40 @[KR 8ed]

the Preposition is statisfiable when Pit q:T Y:T S:F