
Logic:

Propositional Logic
 (continue)

Acknowledgment: All course slides are either referenced to Rosen Book online presentations 
(with certain amendments) or are personally developed by the instructors.
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• A proposition is a statement that is either true or false.
– A proposition has a truth value. 
– A truth value can only be true or false; it can not be none or both
– A statement is not a proposition if it is:

o A question, command, or contain unknown variable(s). 
– It can be assigned to a propositional variable.

• New compound proposition can created as a result of applying logical 
connectives on one or more propositions.
– Negation  ¬	 	 NOT
– Conjunction ∧	 	 AND
– Disjunction ∨	 	 OR (inclusive or) 
– Exclusive OR ⊕  XOR (both is not accepted)
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Previously,
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• To find the truth value of a given compound proposition, we create a 
truth table. 
– Start with a column for every propositional variable in the preposition.
– #rows = 2#variables
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Previously,
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• Connectives
– Implication; contrapositive, inverse, converse
– Biconditional

• Truth tables of compound propositions

• Logical equivalence

• Propositional satisfiability

Agenda
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• If p  and q  are propositions, then p	→q is a conditional statement or implication 
which is read as “if p, then q ”.

• It has this truth table:

• Example: If p  denotes “I am at home.” and q  denotes “It is raining.” then   p	→q  
denotes “If I am at home then it is raining.” 
• In p	→q , p  is the hypothesis and q  is the conclusion.
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Implication

p q p →	q
T T T
T F F
F T T
F F T
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• In p	→q	there does not need to be any connection between the 
hypothesis or the conclusion.	The “meaning” of	p	→q	depends only 
on the truth values of p and q.

• These implications are perfectly fine, but would not be used in 
ordinary English.
– If the clouds are made of cotton candy, then I have more money than Bill 

Gates.
– if UQU is opened every Friday then 2 is a prime. 
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Understanding Implication
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• One way to view the logical conditional is to think of an obligation or 
contract.
– “If I am elected, then I will lower taxes.”
– “If you get 100% on the final, then you will get an A.”

• If the politician is elected and does not lower taxes, then the voters 
can say that he or she has broken the campaign pledge. Something 
similar holds for the professor. This corresponds to the case where p 
is true and q is false.             
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Understanding Implication (cont)
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• Assume you have these propositions:
p : You exercise three times a week.
r : You follow a low-carb diet.
q : You lose weight.
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Understanding Implication (cont)

p q p →	q Explanation
T T T It is accepted. If you exercise, then naturally you will lose weight. 
T F F It is rejected. Since one of the causes is true, the result must be fulfilled. 
F T T It is accepted. There are other causes to lose weight not just exercising.
F F T It is accepted. If the you don’t exercise, then you may not lose weight. 
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    if p, then q                     p implies q 
    if p, q                              p only if q         
				q unless ¬p                 q when p
    q if p																																					
    q whenever p         p is sufficient for q 
    q follows from p          q is necessary for p

     a necessary condition for p is q
     a sufficient condition for q is p
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Different Ways of Expressing p	→q  
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• From p	→q  we can form new conditional statements:

q	→p            is the converse of p	→q 

¬q	→	¬	p    is the contrapositive  of p	→q

¬	p	→	¬	q   is the inverse of p	→q

First Semester - 1445Discrete Structures (1)10

Converse, Contrapositive, and Inverse
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Find the converse, inverse, and contrapositive of “It is raining is a 
sufficient condition for my not going to town.”

• p = It is raining  q = I’m not going to town
converse: 	 q	→p	

If I’m not going to town, then it is raining.
inverse:    ¬	p	→	¬	q 

If it is not raining, then I’m going to town.
contrapositive: 	¬q	→	¬	p 

If I’m going to town, then it is not raining. 

First Semester - 1445Discrete Structures (1)11

Example
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• If p  and q  are propositions, then  we can form the biconditional statement , p	↔q , read as “p  if 
and only if q .” 

• It has the following truth table:

•  If p  denotes “I am at home.” and q   denotes “It is raining.” Then p	↔q   denotes “I am 
at home if and only if it is raining.”
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Biconditionals

p q p ↔	q
T T T
T F F
F T F
F F T
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• Some alternative ways “p if and only if q” is expressed in English:

–   p is necessary and sufficient for q
–   if p then q , and conversely
–   p iff q
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Expressing the Biconditionals
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• Construction of a truth table:
• Rows
– Need a row for every possible combination of values  for the propositional 

variables.
– The number of rows in the table with n variables = 2!

• Columns
– Need a column for the compound proposition (usually at far right)
– Need a column for the truth value of each expression that occurs in the 

compound proposition as it is built up.
o This includes the propositional variables
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Truth Tables For Compound Propositions
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• Construct a truth table for:
𝑝	∨	q → ¬𝑟	
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Example Truth Table
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• Construct a truth table for:
𝑝	∨	q → ¬𝑟	
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Example Truth Table

p q r ¬r p Ú q p Ú q → ¬r

T T T F T F

T T F T T T

T F T F T F

T F F T T T

F T T F T F

F T F T T T

F F T F F T

F F F T F T
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Operator Precedence

¬ 1

Ù  
 Ú

2
3

®
 «

4
5
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Precedence of Logical Operators

p		Úq	®		¬r			is equivalent to (p		Úq)	®		¬r

If the intended meaning is p		Ú(q	®		¬r	),	then parentheses must be used.
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• Connectives
– Implication; contrapositive, inverse, converse
– Biconditional

• Truth tables for compound propositions

• Logical equivalence

• Propositional satisfiability
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Agenda
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• A  tautology is a proposition which is always true.
– Example: p ∨¬p 

• A  contradiction is a proposition which is always false.
– Example: p ∧¬p    

• A  contingency is a proposition which is neither a tautology nor a 
contradiction, such as  p
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Classification of compound 
propositions

p ¬p p ∨¬p p ∧¬p 

T F T F

F T T F
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• Two compound propositions p and q are logically equivalent if  
p↔q  is a tautology.

• We write this as p⇔q  or as p≡q where p and q are compound 
propositions.

• Two compound propositions p and q are equivalent if and only 
if the columns in a truth table giving their truth values agree.
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Logically Equivalent
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• Example: Show using a truth table that the conditional is equivalent 
to the contrapositive.
– Conditional: p	→	q	   Contrapositive: ¬q	→	¬p	
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Equivalent Propositions
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• Example: Show using a truth table that the conditional is equivalent 
to the contrapositive.
– Conditional: p	→	q	   Contrapositive: ¬q	→	¬p	

p	→	q	⇔	¬q	→	¬p	
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Equivalent Propositions

p q ¬ p ¬ q p →	q ¬q → ¬ p 

T T F F T T

T F F T F F

F T T F T T

F F T T T T
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• Example: Show using a truth table that 
¬p	∨	q		is equivalent to p	→	q.
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Equivalent Propositions
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• Example: Show using a truth table that 
¬p	∨	q		is equivalent to p	→	q.

¬p	→	q	⇔	p	→	q
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Equivalent Propositions

p q ¬p ¬p ∨ q p→ q

T T F T T

T F F F F

F T T T T

F F T T T
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Example: Show using truth tables that neither the converse nor 
inverse of an implication are not equivalent to the implication.
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Using a Truth Table to Show  Non-Equivalence
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Example: Show using truth tables that neither  the converse nor 
inverse of an implication are not equivalent to the implication.

Converse: q	→	p	   inverse: ¬p	→	¬q
Implication: p	→	q
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Using a Truth Table to Show  Non-Equivalence

p q ¬ p ¬ q p →	q ¬ p →	¬ q q → p 

T T F F T T T

T F F T F T T

F T T F T F F

F F T T T T T
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¬ 𝑝 ∧ 𝑞 ≡ ¬𝑝 ∨ ¬𝑞

¬ 𝑝 ∨ 𝑞 ≡ ¬𝑝 ∧ ¬𝑞

This truth table shows that De Morgan’s Second Law holds.

First Semester - 1445Discrete Structures (1)27

De Morgan’s Laws

p q ¬p ¬q (p∨q) ¬(p∨q) ¬p∧¬q

T T F F T F F

T F F T T F F

F T T F T F F

F F T T F T T

Augustus De Morgan
1806-1871
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• Identity Laws:   𝑝 ∧ 𝑇 ≡ 𝑝 ,  𝑝 ∨ 𝐹 ≡ 𝑝

• Domination Laws:  𝑝 ∨ 𝑇 ≡ 𝑇 ,  𝑝 ∧ 𝐹 ≡ 𝐹

• Idempotent laws:  𝑝 ∧ 𝑝 ≡ 𝑝 ,  𝑝 ∨ 𝑝 ≡ 𝑝

• Double Negation Law:  ¬(¬𝑝) ≡ 𝑝

• Negation Laws:   𝑝 ∨ ¬𝑝 ≡ 𝑇 ,  𝑝 ∧ ¬𝑝 ≡ 𝐹
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Key Logical Equivalences
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• Commutative Laws: 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝 , 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝 

• Associative Laws: 𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ (𝑞 ∧ 𝑟)
    𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟

• Distributive Laws: 𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)
   𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)

• Absorption Laws:  𝑝 ∨ 𝑝 ∧ 𝑞 ≡ 𝑝 , 𝑝 ∧ 𝑝 ∨ 𝑞 ≡ 𝑝
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Key Logical Equivalences (cont)
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More Logical Equivalences
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• We can show that two expressions are logically equivalent by developing a 
series of logically equivalent statements.

• To prove that     𝐴 ≡ 𝐵    we produce a series of equivalences beginning 
with A and ending with B.

𝐴 ≡ 𝐴!
⋮

𝐴" ≡ 𝐵

• Keep in mind that whenever a proposition (represented by a propositional 
variable) occurs in the equivalences listed earlier, it may be replaced by an 
arbitrarily complex compound proposition.
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Constructing New Logical Equivalences
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Example: Show that                          is logically equivalent to 
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Equivalence Proofs
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Example: Show that                          is logically equivalent to 
Solution:
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Equivalence Proofs
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Example: Show that                                     is a tautology. 
Solution:
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Equivalence Proofs
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• Connectives
– Implication; contrapositive, inverse, converse
– Biconditional

• Truth tables for compound propositions

• Logical equivalence

• Propositional satisfiability
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Today’s Agenda
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• A compound proposition is satisfiable if there is an assignment of 
truth values to its variables that make it true. 

• A compound proposition is unsatisfiable if and only if its negation is 
true for all assignments of truth values to the variables, that is, if and 
only if its negation is a tautology.

• When we find a particular assignment of truth values that makes a 
compound proposition true, we have shown that it is satisfiable; such 
an assignment is called a solution.
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Propositional Satisfiability
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Example: Determine the satisfiability of the following compound 
propositions:
•  
 Solution: Satisfiable. Assign T to p,	q,	and r.
 
•   
 Solution: Satisfiable. Assign T to p	and	F	 to	q.

•  
 Solution:  Not satisfiable. Check each possible assignment of truth 
values to the propositional variables and none will make the 
proposition true.
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Questions on Propositional 
Satisfiability
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• Read sections 1.1.3, 1.1.4, 1.3.1 to 1.3.5 of Rosen’s book. 

• Practice and solve the practice sheet in the Blackboard (all exercises).
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What is Next?


