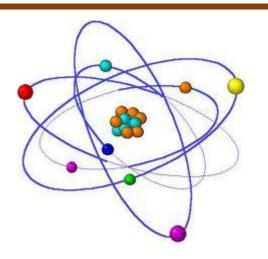
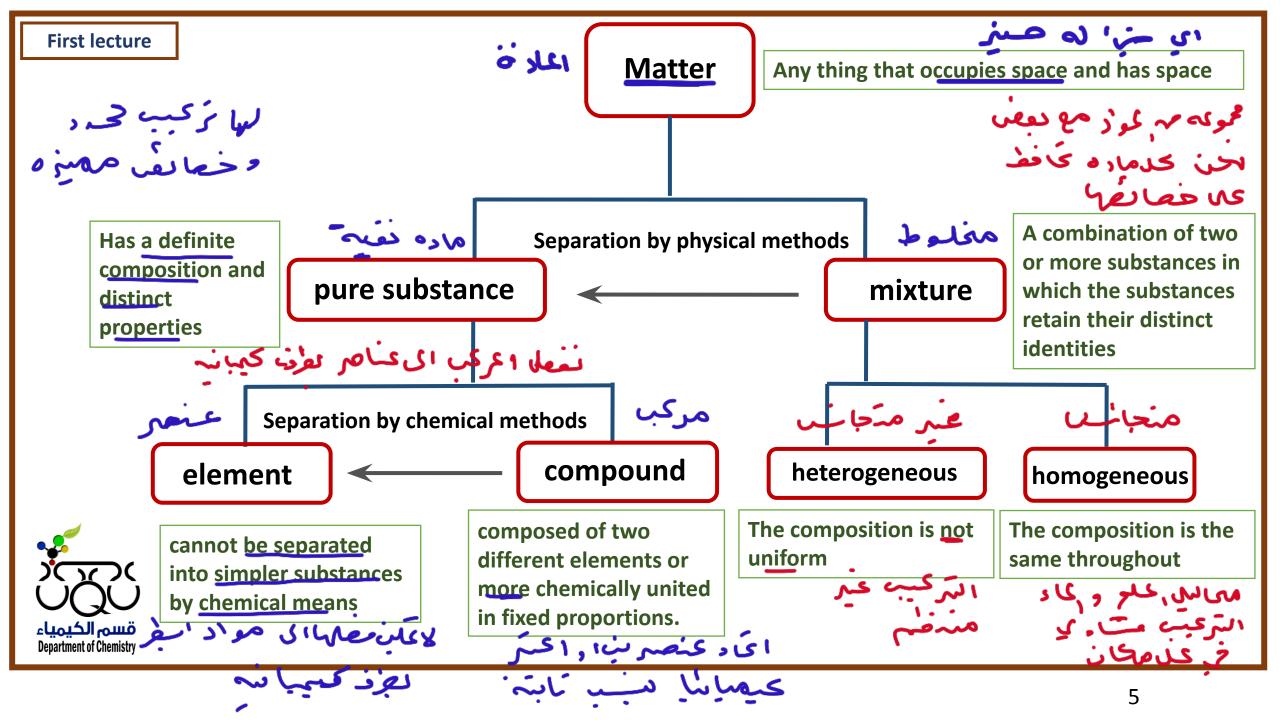
General Chemistry

CHM1101



COURSE NAME: CHEMISTRY 101

COURSE CODE: 402101-4


What is Chemistry?

The study of matter and the changes it undergoes

الكيمياء: دراست اعادة والتعين الله كان لها

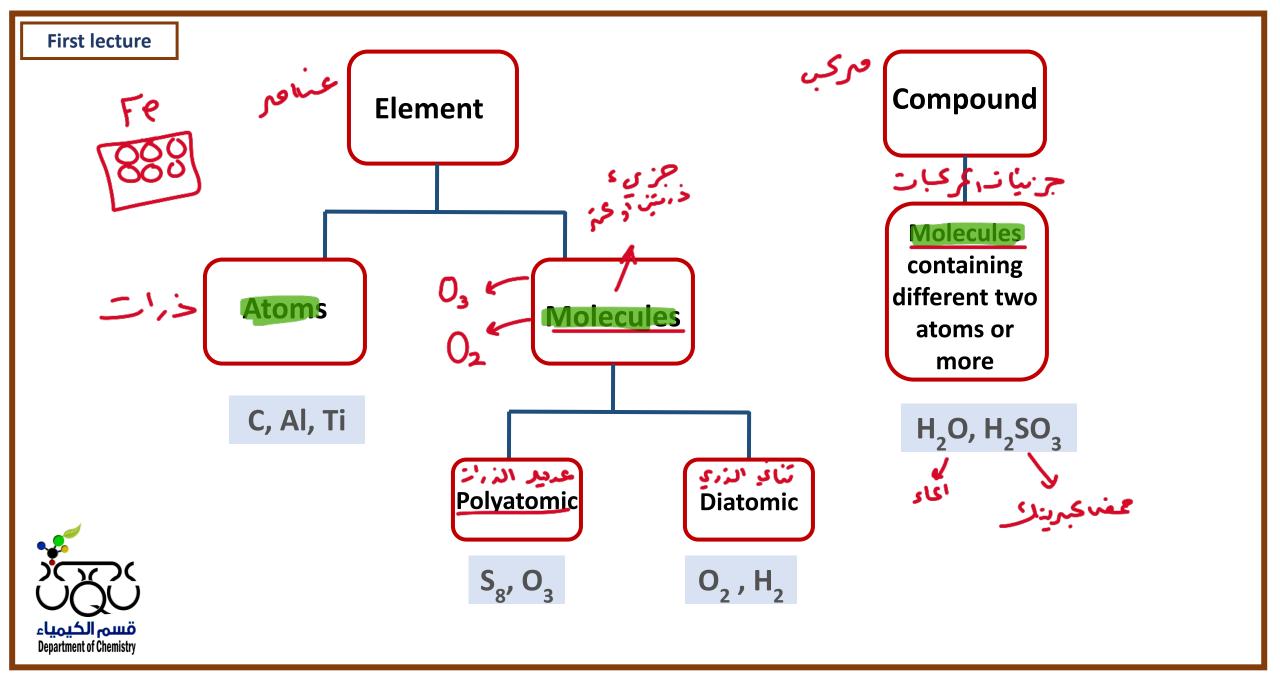
	NaCl	مرکب
	Salt water	خاط مدین
	Iron Fe حري	مفد
-6 H12 O	sugar	مرکب
N ₂ O ₂	air	خليطمتجان
	helium He	عنعر
4120	<u>water</u>	م کب
	salad	خليط غير متجان

<u>compoun</u>d م کب

element عن homogeneous mixture

<u>heterogeneous</u> حامط عبرمتجان

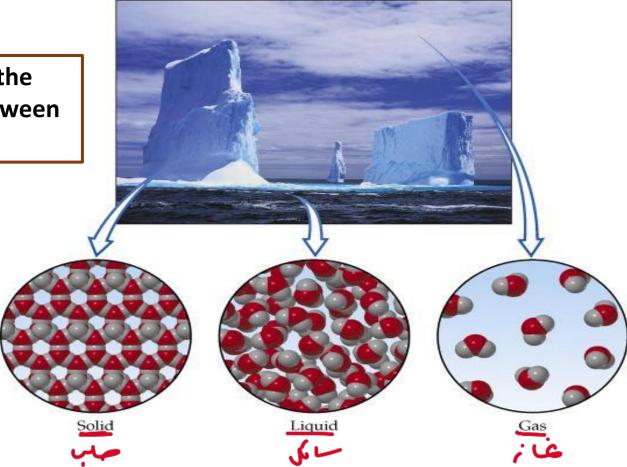
NaCl	compound
Salt water	homogeneous mixture
Iron	element
sugar	compound
air	homogeneous mixture
helium	element
water	compound
salad	heterogeneous mixture



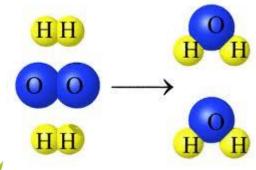
compound

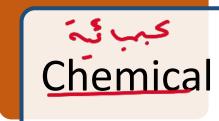
element

homogeneous mixture

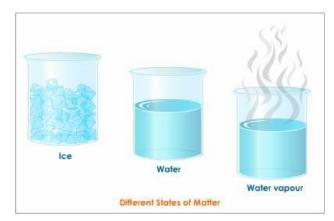

heterogeneous

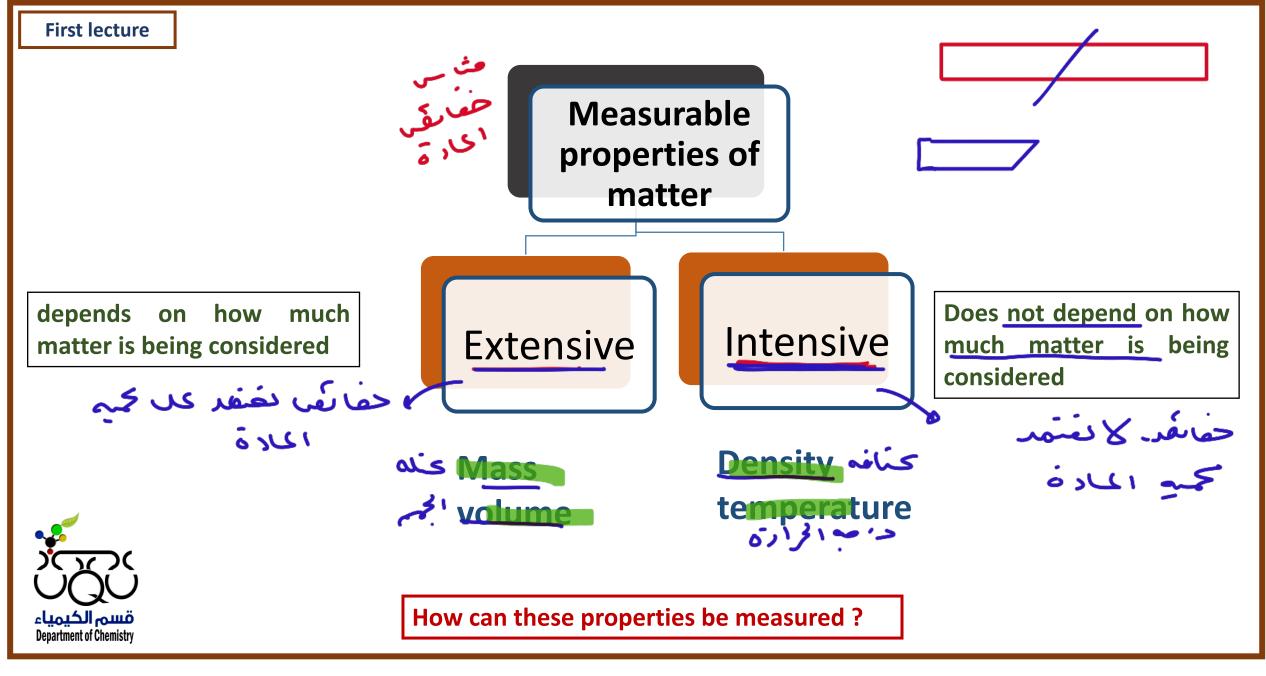
Matter States


The difference between the states is the distance between the molecules.


حمر نام. النا نعمر خلال الرقير اللطيميا في

is a property when the matter undergoes a chemical change or reaction





reactivity,
flammability
کا درخایل

ررن <u>colo</u>r, کنله <u>mass,</u> می ئ صد العبزبانی منم الترف عیها دوید انی صدای تغیر الترکیب او ای خانعه

Can be measured and observed without changing the composition or identity of a substances

سين Measurement

SI Units

International system of units التحام العاعب الوصرر

Symbol	Name of unit	Base Quantity
m	m	
Kg	Kilo	
S	Se	
A	An	
K	K	
mol	N	
cd	ca	

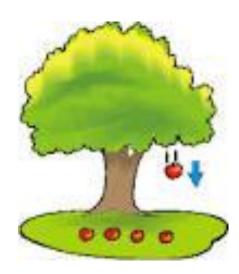
Measurement

International system of units

Symbol	Name of unit	Base Quantity
m	meter	مزل Length
Kg	Kilogram	Mass 👡
S	Second	Time ヾ゚ジ
Α	<u>A</u> mpere	Electrical current
K	Kelvin	Temperature 6:
mol	Mole	Amount of substance
cd	candela	Luminous intensity 6

Prefixes Used with SI Units

	Prefix	Symbol	Multiple of Base Unit
	Giga	G	1,000,000,000 or 10 ⁹
	Mega	M	1,000,000 or 10 ⁶
•	kilo	k	1,000 or 10 ³
	deci	d	0.1 or 10 ⁻¹
	centi	С	0.01 or 10 ⁻²
	milli	m	0.001 or 10 ⁻³
	micro	m	0.000001 or 10 ⁻⁶
	nano	n	10 ⁻⁹
	pico	р	10 ⁻¹²
	Femto	f	10 ⁻¹⁵


قسم الكيمياء Department of Chemistry

5km = 5600 m

الكته الكته

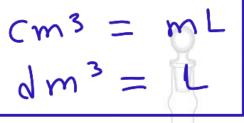
Mass and weight

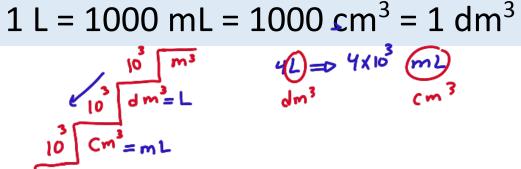
What is the difference between mass and weight?

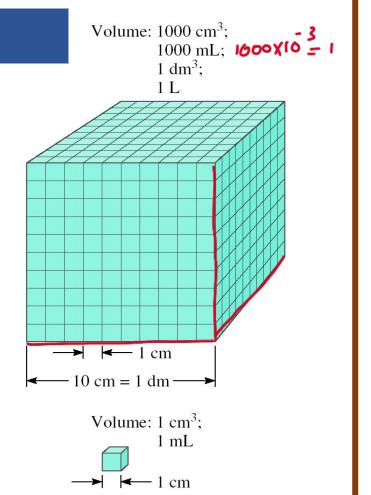
Mass: is a measure of amount of matter in an object

$$1 \text{ Kg} = 1000 \text{ g} = 1 \times 10^3 \text{ g}$$

Weight: is the force that gravity exerts on an object المرزن المعادر كارس الكورزن المعادر كارس الكورزن المعادر كارس الكورزن المعادر كالمرزن كالمرزن المعادر كالمرزن المعادر كالمرزن المعادر كالمرزن المعادر كالمرزن كالمرزن المعادر كالمرزن المعادر كالمرزن المعادر كالمرزن كالمرزن المعادر كالمرزن كالمرزن المعادر كالمرزن المعادر كالمرزن ك

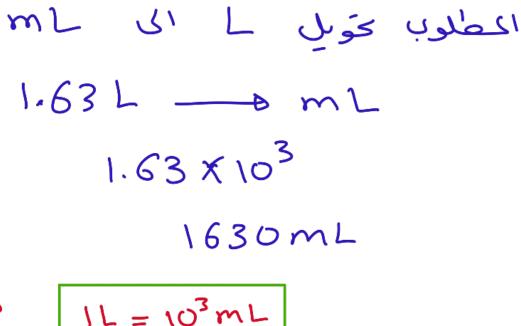

Newton (N)


Volume – SI derived unit for volume is cubic meter (m³)



$$1 \text{ cm}^3 = (1 \text{ x } 10^{-2} \text{ m})^3 = 1 \text{ x } 10^{-6} \text{ m}^3$$

$$1 \text{ cm}^3 = 1 \text{ mL}$$

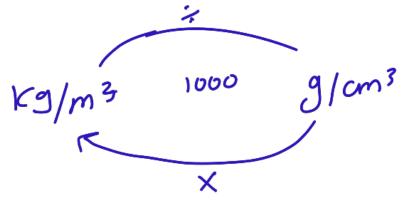


<u>Dimensional Analysis Method of Solving Problems</u>

How many mL are in 1.63 L?

Conversion Unit 1 L = 1000 mL

1.63
$$\times$$
 x = 1630 mL
1.63 \times x = 1630 mL
103 mL = 1630


Density

التنافه <u>- التنكه</u> الحم

Density is defined as the mass per unit volume.

density = mass/volume
$$d = \frac{m}{V}$$
 S.I. units for density = $\frac{kg}{m}^3$ $d = \frac{m}{V}$ $m = d \cdot V$ $v = \frac{m}{d}$ m^3

g/cm³ for solids g/ml for liquids g/L for gases المواد العلبة اكود السائله. الفازات

Density

كنانة

A piece of platinum metal with a density of 21.5 g/cm^3 has a volume of 4.49 cm^3 . What is its mass?

$$d = \frac{m}{V}$$

$$m = d \times V$$

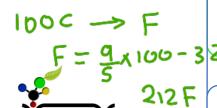
= 21.5 × 4.49 = 96.59

$$m = d \times V$$

$$m = 21.5 \text{ g/cm}^3 \times 4.49 \text{ cm}^3 = 96.5 \text{ g}$$

First lecture C = k - 2 + 3

Temperature


K = C +273

Temperature scales

C=50C

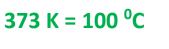
$$| < = 50 + 273$$

= $3 = 3 | <$

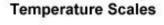
$$C = \frac{5}{a}(F - 32)$$

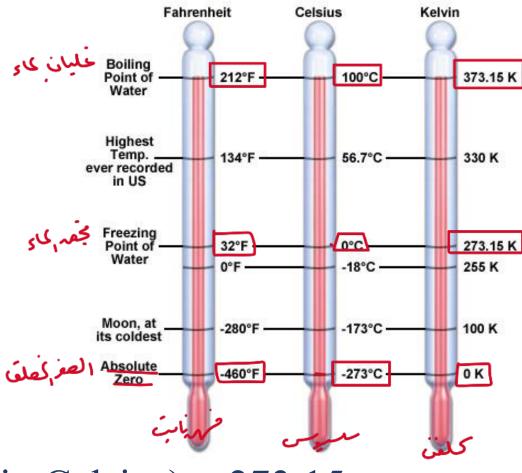
Fahrenheit

oC


Kelvin

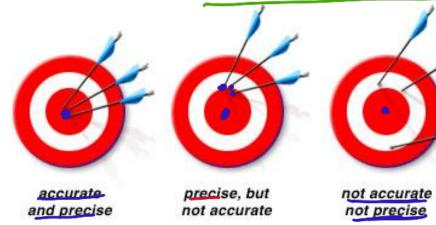
K


 ${}^{0}F = (\frac{9}{5} \times {}^{0}C) + 32$


$$32 \, {}^{0}F = 0 \, {}^{0}C$$

212 ${}^{0}F = 100 \, {}^{0}C$

 $273 \text{ K} = 0^{\circ}\text{C}$

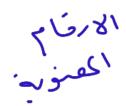


T(in Kelvin) = T(in Celsius) + 273.15

Precision and Accuracy

Stud	dent AStuc	lent B	Student C	
1.96	64 g	1.972 g	2.000 g	
1.97	78 g	1.968 g	2.002 g	
Average	1.971 g	1.97	0 g 2.001 g	

The true mass of object= 2.000 g


Precision: how close a set of measurements are to each other (reproducibility).

Accuracy: how close your measurements are to the true value.

قسم الكيمياء Denartment of Chemistry 600

Significant Figures

- Any digit that is not zero is significant
 - 1.234 kg 4 significant figures
- Zeros between nonzero digits are significant
 - 606 m 3 significant figures
- Zeros to the left of the first nonzero digit are not significant
 - 0.08 L 1 significant figure
- If a number is greater than 1, then all zeros to the right of the decimal point are significant
 - 2.0 mg 2 significant figures
- If a number is less than 1, then only the zeros that are at the end and in the middle of the number are significant
 - 0.00420 g 3 significant figures

Singinficant Figures فواعد الارفام المعنويي

٠ كل الماعداد عير الصوب في ارفام معموبي 23.6 = 3 SF

 عد الاصفار دافل العدد وعلى بعين الفاحله نُعبَر ارقام معفوني 1005 = V 4 SF 1.00 -> 3 SF

(3) الاصارى الب كانقد ارمام معنون

0.0008 <u>من 18 ج</u> 0.0008 <u>بيمت</u> درون فاطة لانقد ارقام مصورة

1000 = 15F 1000 · 0 = 55F

﴿ الارقام المحوية بالحبية العلمة كالعد لارقام الاس 5×10⁵ ⇒ 4 SF 5.3×10 = 2SF

الجه والطرح 12.34 + 5.6 = 17,94 بنحث عم اقل عدد ارمًام مصورت عین الفاعلة (واف)

الغرب والعسمه 3. 42 x 4.5

= 15.39

امل ارفام معمودي هي (2) 12 41081

How many significant figures are in each of the following measurements?

1) 24 ml

2 significant figures

2) 3001 g

4 significant figures

3) $0.0320 m^3$

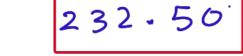
• 3 significant figures

4) 6.4×10^4 molecules

2 significant figures

Tip: start to count the sig. fig. from the left when you see a non zero number until the end of the number.

Significant Figures: Addition & Subtraction


If addition or subtraction:

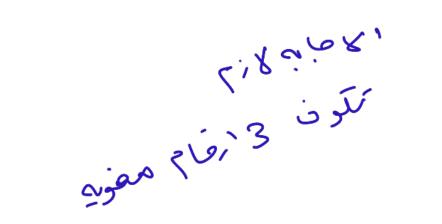
- 1- must have same power before addition or subtraction 2- sig. fig. in the answer is as the smaller digits after decimal point

Example Y = 232.234 + 0.27

Find Y.

Answer

$$Y = 232.50$$



Significant Figures: Multiplication & Division

When multiplying or dividing numbers, the end result should have the same amount of significant digits as the <u>number with the least</u> amount of significant digits.

$$4.51 \times 3.6\underline{6}66 = 16.53636 \approx 16.5$$
(3 sf) (3 sf) (3 sf)

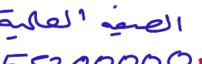
Significant Figures

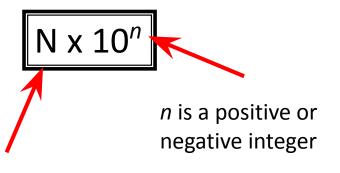
Exact Numbers

الارتمام الدضية ارعًام ناقط عناقط عدد لين فتياس لاندخل محاد لارتمام لعنوب للنواح عدد لين فتياس لاندخل محاد لارتمام لعنوب للنواح

The average of three measured lengths; 6.64, 6.68 and 6.70?

$$\frac{6.64 + 6.68 + 6.70}{3} = 6.67333 = 6.67$$




Because 3 is an exact number

Scientific Notation

5.52 X 10

The number of atoms in 12 g of carbon:

602,200,000,000,000,000,000,000

 6.022×10^{23}

0.00023

2.3 X10

The mass of a single carbon atom in grams:

 1.99×10^{-23}

N is a number

between 1 and 10

$$568.762 = 5.68762 \times 10^2$$
 (6 SF)

$$0.00000772 = 7.72 \times 10^{-6} (3 SF)$$

Question 1

Which of the following is an example of a physical property?

A) combustibility

مَا الميهِ لا سَرَاتَ

B) corrosiveness

الله كل

C) explosiveness

الانفحار

D) density

E) A and D

Question 2

Which of the following represents the greatest mass?

(A)
$$2.0 \times 10^3 \text{ mg} \ 2 \times 10^3 \times 10^{-3} = 29$$

B)
$$10.0 \, \text{dg} \times 10^{-1} = 19$$

C)
$$0.0010 \text{ kg} \ 0.001 \times 10^3 = 49$$

D)
$$1.0 \times 10^6 \, \mu \text{g} \times 10^6 = 19$$

E)
$$3.0 \times 10^{12} \text{ pg } \times 10^{-12} = 39$$

Question 3 $C_2 = 240 - 273 = -33 C_3 = 195 C_4 = 195 C_5$ Convert 240 K and 468 K to the Celsius scale.

- **A)** 513°C and 741°C
- **B)** -59°C and 351°C
- **C)** -18.3°C and 108°C
- **(D)**-33°C and 195°C

Question 4

Calculate the volume occupied by 4.50 X 10² g of gold (density = 19.3 g/cm^3).

A)
$$23.3 \text{ cm}^3$$

$$d=m$$

B)
$$8.69 \times 10^3 \text{ cm}$$

C)
$$19.3 \text{ cm}^3$$

D)
$$450 \text{ cm}^3$$

$$V = \frac{m}{d} = \frac{4.50 \times 10^{2}}{19.3}$$

the correct answer.

Question 6

How many significant figures are there in the measurement 3.4080 g?

- **A)** 6
- **B**) 5
- **C)** 4
- **D**) 3

Question 7

How many significant figures should you report as the sum of 8.3801 -2.57? 5.81

- **A)** 3
- **B**) 5
- **C)** 7
- **D**) 6

Question 9

The value of 345 mm is a measure of

- temperature **B**) density
- C) volume B)
- (D) distance E) Mass

Question 10

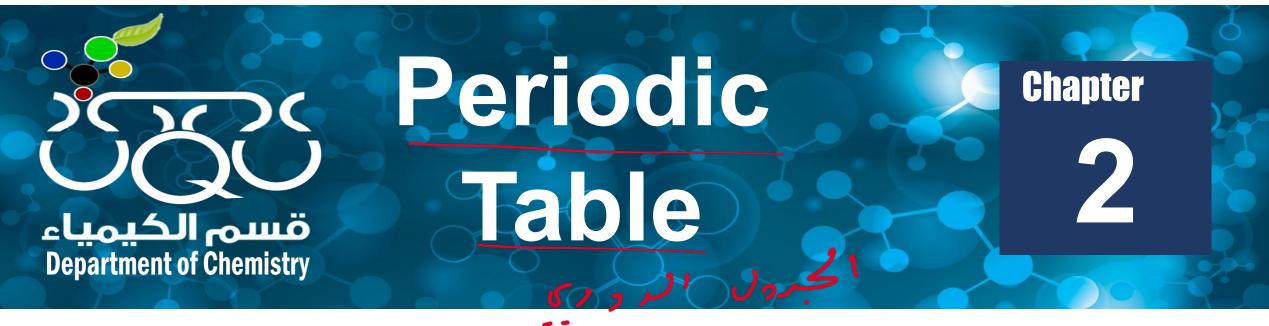
The measurement 0,000 004-3 m, expressed correctly using scientific notation, is

- A. $0.43 \times 10^{-5} \,\mathrm{m}$ B. 4.3×10^{-6}
- C. 4.3×10^{-7} D. 4.3×10^{-5}

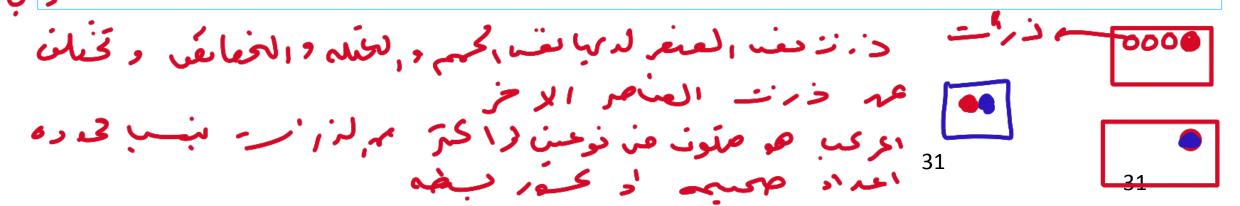
Question 11

A laboratory technician analyzed a sample three times for percent iron and got the following results: 22.43% Fe, 24.98% Fe, and 21.02% Fe. The actual percent iron in the sample was 22.81%. The analyst's

A precision was poor but the average result was accurate.


B) accuracy was poor but the precision was good.

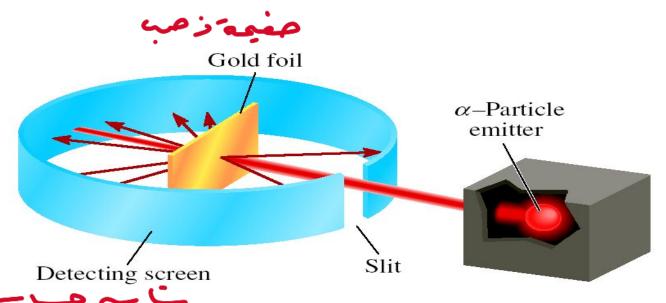
- **C)** work was only qualitative.
- **D)** work was precise.
- E) C and D.

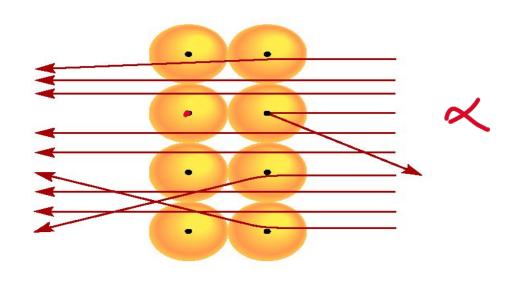

COURSE NAME: CHEMISTRY 101

COURSE CODE: 402101-4

Dalton's Atomic Theory (1808)

- 1. Elements are composed of extremely small particles called atoms.
- 2. All **atoms** of a given element are identical, having the same size, mass and chemical properties. The atoms of one element are different from the atoms of all other elements.
- 3. **Compounds** are composed of atoms of more than one element. In any compound, the <u>ratio</u> of the numbers of atoms of any two of the elements present is either an integer or a simple fraction.
- 4. A **chemical reaction** involves only the separation, combination, or rearrangement of atoms; it does not result in their creation or destruction.




مجربه ردامور

Rutherford's Experiment

کتله البرونور اکبر د 1840 مرد من کیلم ت

(1908 Nobel Prize in Chemistry)

 α particle velocity ~ 1.4 x 10⁷ m/s (~5% speed of light)

- عرجہ تسرکز نولی atoms positive charge is concentrated in the nucleus
- 2. proton (p) has opposite (+) charge of electron (-)
- 3. mass of p is $1840 \times \text{mass}$ of e^{-1} (1.67 x 10^{-24} g)

TABLE 2.1 Mass and Charge of Subatomic Particles

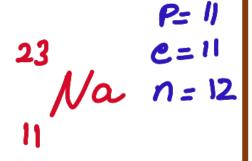
0-	_	9
.~	•	

	حته	Çharç کر و	
Particle	Mass (g)	Coulomb	Charge Unit
Electron*	9.10938×10^{-28}	-1.6022×10^{-19}	-1
Proton P*	1.67262×10^{-24}	$+1.6022 \times 10^{-19}$	+1
Neutron	1.67493×10^{-24}	0	0

*More refined measurements have given us a more accurate value of an electron's mass than Millikan's.

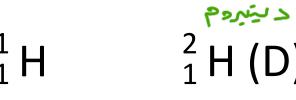
mass p ≈ mass n ≈ 1840 x mass e - کنده الاسکرون = P منح - کنده الاسکرون

حنه البرونون - سمنه ح


Atomic number, Mass number and Isotopes

العدرازر

Atomic number (Z) = number of protons in nucleus
$$= P$$
 عدد


<u>Mass number</u> (A) = number of protons + number of neutrons P+D

= atomic number (Z) + number of neutrons

Isotopes are atoms of the same element (X) with different numbers of neutrons in their nuclei

Element Symbol

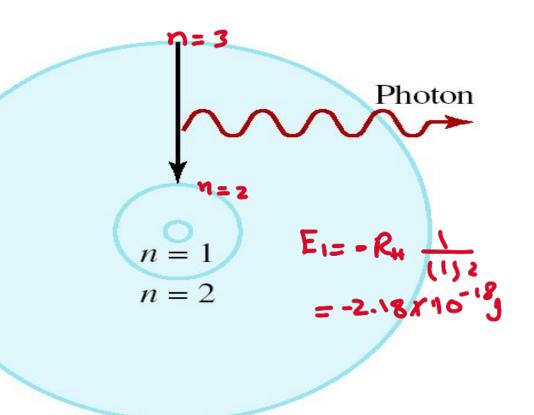
خطائر اليورانيوم سے U

Bohr's Model of the Atom (1913)

کفودی بجر له ره الهیرمن

- 1. e⁻ can only have specific (quantized) energy values
- 2. light is emitted as e moves from one energy level to a lower energy level

الالحترون له حميم صحوده عمرلطامته منوی منوی منوی ایله عندما مبنعل الاله عمروذ مسنوی ایل مستوی ایل


$$E_n = -R_H (1/n^2)$$

مانت ریزدری کری مانت ریزدری کری

قسم الكيمياء Department of Chemistry n (principal quantum number) =

1,2,3,...

$$R_{\perp}$$
 (Rydberg constant) = 2.18 x 10⁻¹⁸J

$$n=3$$

$$E_{N}=-R_{H}\left(\frac{1}{N^{2}}\right)$$

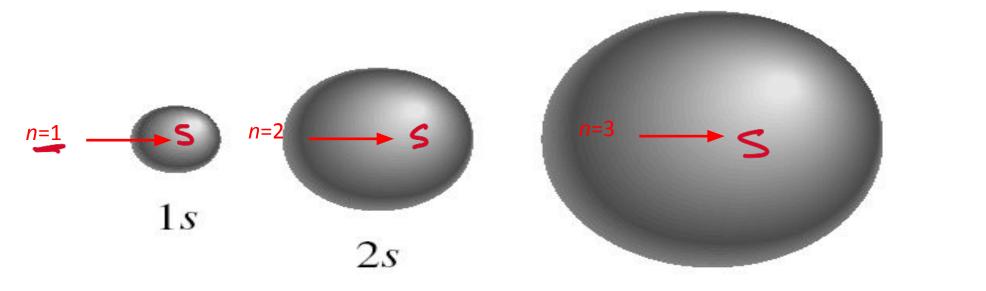
$$E_{N}=-R_{H}\left(\frac{1}{N^{2}}\right)$$

$$E_{N}=-R_{H}\left(\frac{1}{N^{2}}\right)$$

$$E_{N}=-R_{H}\left(\frac{1}{N^{2}}\right)$$

Quantum numbers (n, l, m_l, m_s)

الارفام الكمين


رخم الحم الحركيي principal quantum number (n)

م منكل رخم ايسوى الرئيسي

$$n = 1, 2, 3, 4,$$

. . . .

distance of e from the nucleus

35

Angular momentum quantum number (/)

ممتم الزحم الزاوي المعمى

Shape of the "volume" of space that the e^{-} occupies

n-1

for a given value of n, l = 0, 1, 2, 3, ... n-1

منيه لا سبرا م صين اى ١-١

$$n = 1, l = 0$$

 $n = 2, l = 0 \text{ or } 1$
 $n = 3, l = 0, 1, \text{ or } 2$
 $n = 4$ Leo, 1, 2 or 3

$$I = 0$$
 s orbital

$$l=1$$
 p orbital

$$l=2$$
 d orbital

$$I = 3$$
 f orbital

I = 0 (s orbitals) I = 1 (p orbitals) 1*s* l:2

 $3d_{xy}$

I = 2 (*d* orbitals)

 $3d_{z^2}$

 $3d_{xz}$

 $3d_{yz}$

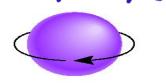
magnetic quantum number (m)

لعمارت فرالواك

orientation of the orbital in space

for a given value of
$$l$$

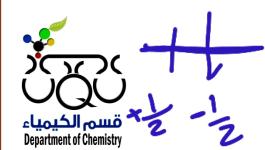
 $m_l = -l,, 0, + l$


$$m_e = -l - \cdots$$

3 if
$$l=1$$
 (p orbital), $m_l = -1, 0, \text{ or } 1$ $l=2$ $m_l = -2, -1, 0, 1, 2$
5 if $l=2$ (d orbital), $m_l = -2, -1, 0, 1, \text{ or } 2$
 $l=3$ $m_l = -3, -2, -1, 0, 1, 2, 3$

spin quantum number (m)

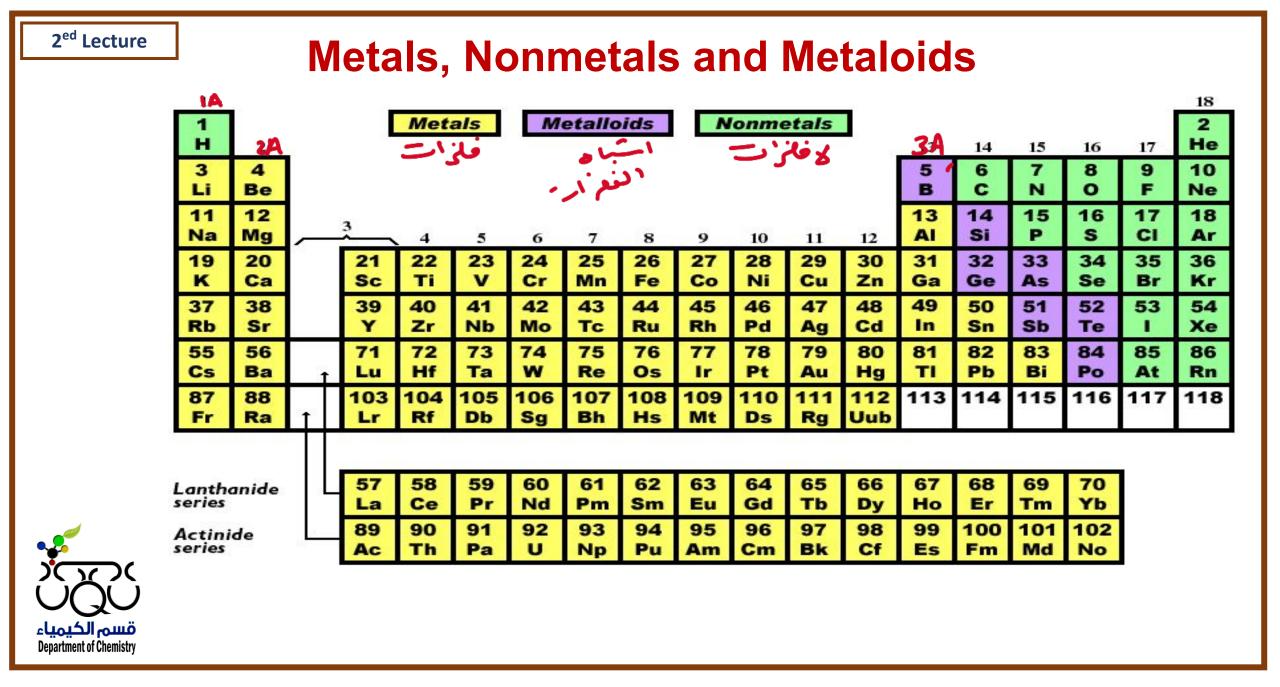
$$m_{s} = +\frac{1}{2} \text{ or } -\frac{1}{2}$$



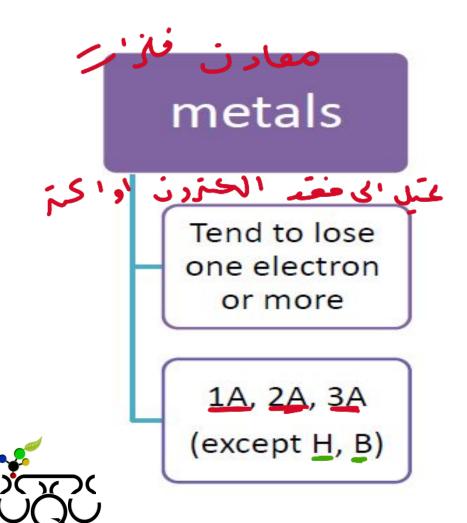
$$m_{s} = +\frac{1}{2}$$

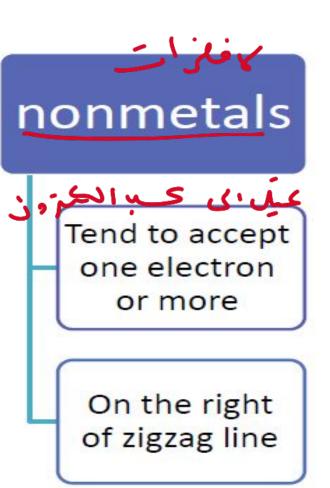
Pauli exclusion principle - no two electrons in an atom can have the same four quantum numbers.

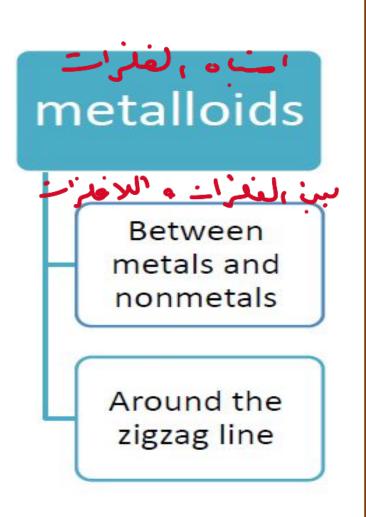
عدد الكروس لدي المربع ارفام كمبعت وبي المرام كمبعت وبي المرام كمبعت وبي المرام كمبعت وبي المرام المربع الم


TABLE 7.2 Quantum Numbers for the First Four Levels of Orbitals in the Hydrogen Atom

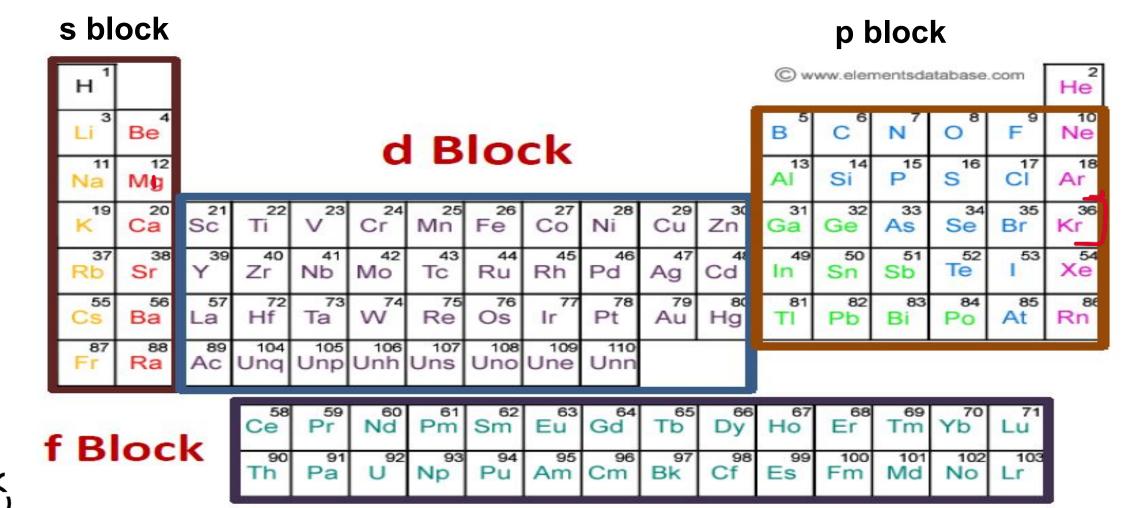
	0	Orbital		No seed to a seed to be a local
<u>n</u>	ℓ	Designation	m_ℓ	Number of Orbitals
1	0	1s	О	1
2	0	2s	О	1
	1	2p	-1, 0, +1	3
3	0	3 <i>s</i>	O	1
	1	3 <i>p</i>	-1, 0, 1	3
	2	3d	-2, -1, 0, 1, 2	5
4	0	4s	О	1
	1	4p	-1, 0, 1	3
	2	4d	-2, -1, 0, 1, 2	5
	3	4f	-3, -2, -1, 0, 1, 2, 3	7


Department of Chemistry


(2)
$$n=1$$
 $l=0$ 1S (4) 0 2
(8) $n=2$ $l=0$ $m_{\ell}=0$ 2S (4) 2
 $l=1$ $m_{\ell}=-1,0,1$ 2P 1+ 1+ 1+ 6
(18) $n=3$ $l=0$ $m_{\ell}=0$ 3S 4+ 2
 $l=1$ $m_{\ell}=-1,0,1$ 3P 1+ 1+ 1+ 6
 $l=2$ $m_{\ell}=-2,-1,0,1,2$ 3d 1+ 1+ 1+ 1+ 10



Department of Chemistry


Metals, Nonmetals and Metaloids

Blocks in Periodic Table

Electron configuration

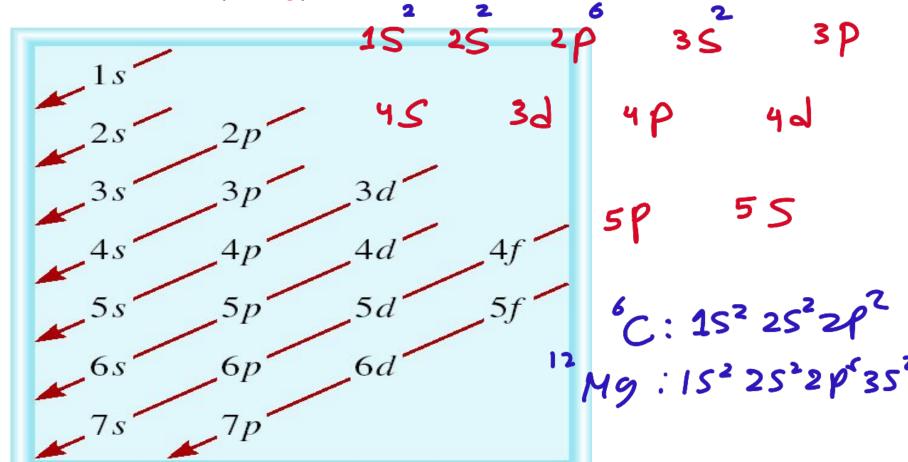
التوزيع الالكتروى

مرابة توزيع الالكترونات غير كمدارت

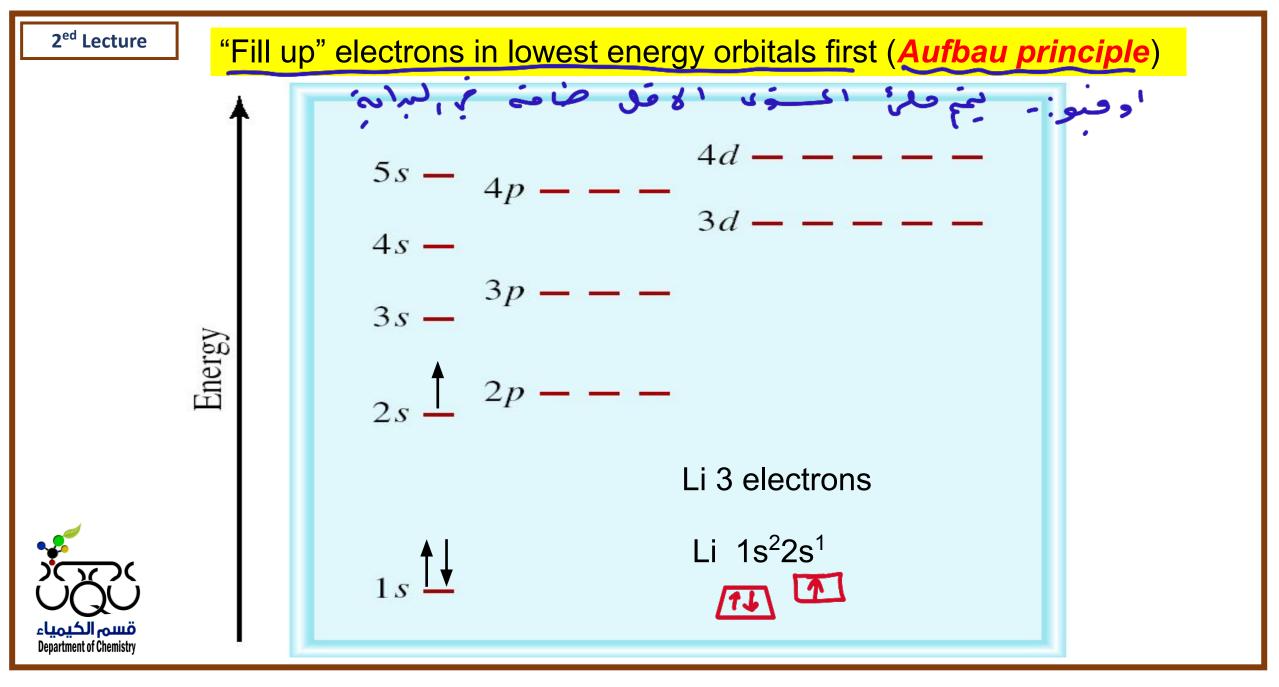
Electron configuration is how the electrons are distributed among the various atomic orbitals in an atom.

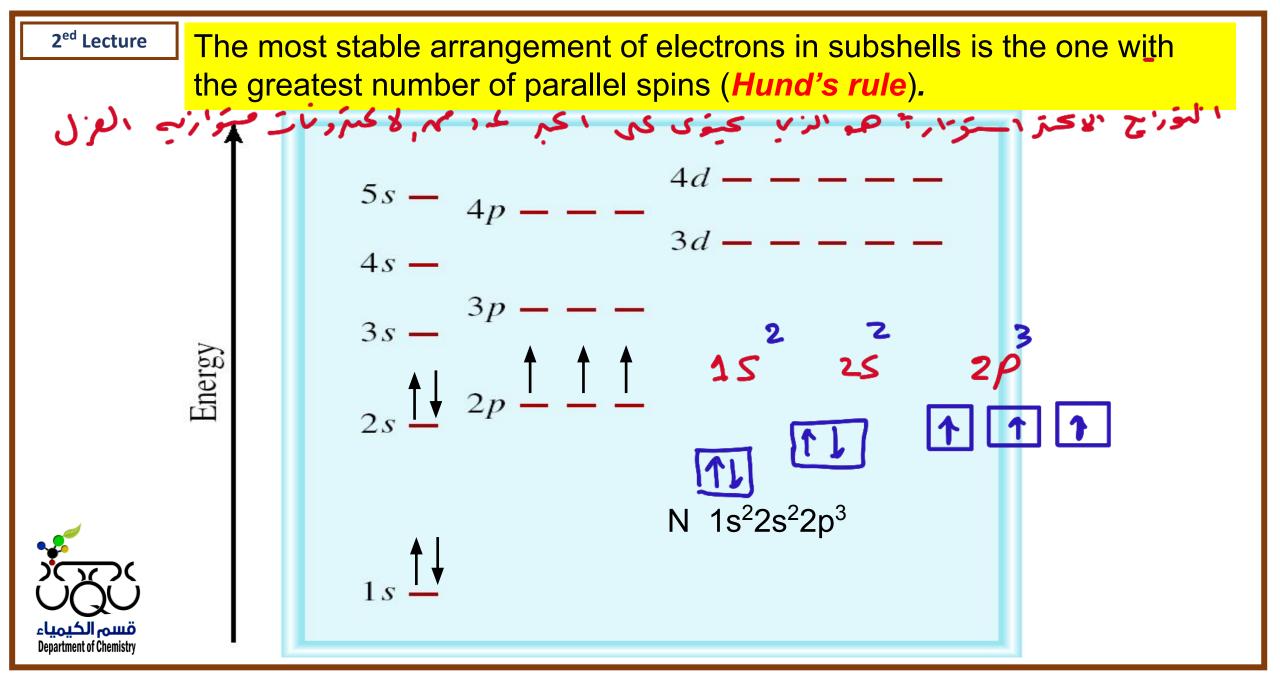
principal quantum number *n*

number of electrons
in the orbital or subshell

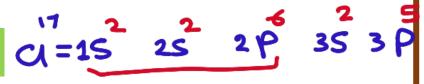

angular momentum quantum number *I*

Orbital diagram





$$1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s$$


What is the electron configuration of Mg? 15 2

$$1s^22s^22p^63s^2$$

$$2 + 2 + 6 + 2 = 12$$
 electrons

[Ne] 1s²2s²2p⁶ Abbreviated as [Ne]3s²

What are the possible quantum numbers for the last (outermost) electron in CI?

$$1s^22s^22p^63s^23p^5$$

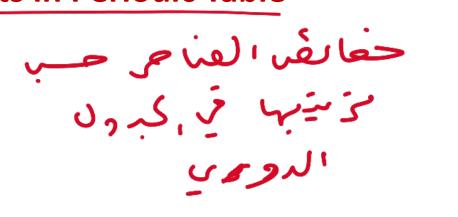
$$2 + 2 + 6 + 2 + 5 = 17$$
 electrons

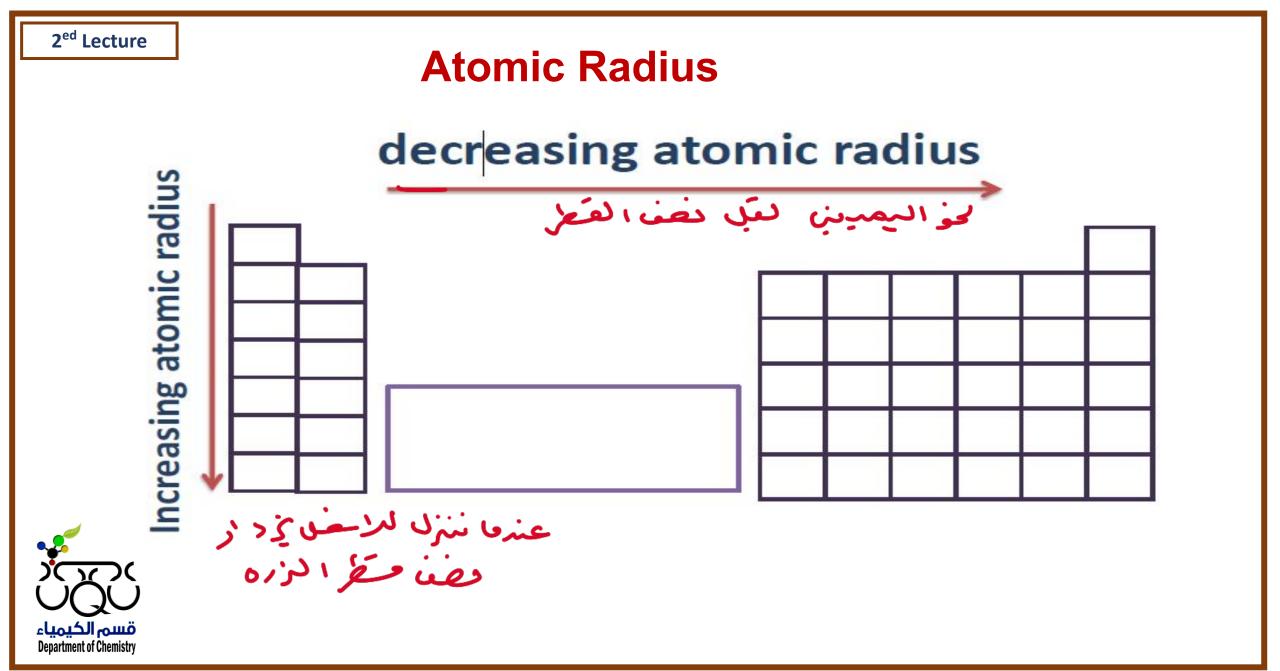
Last electron added to 3p orbital

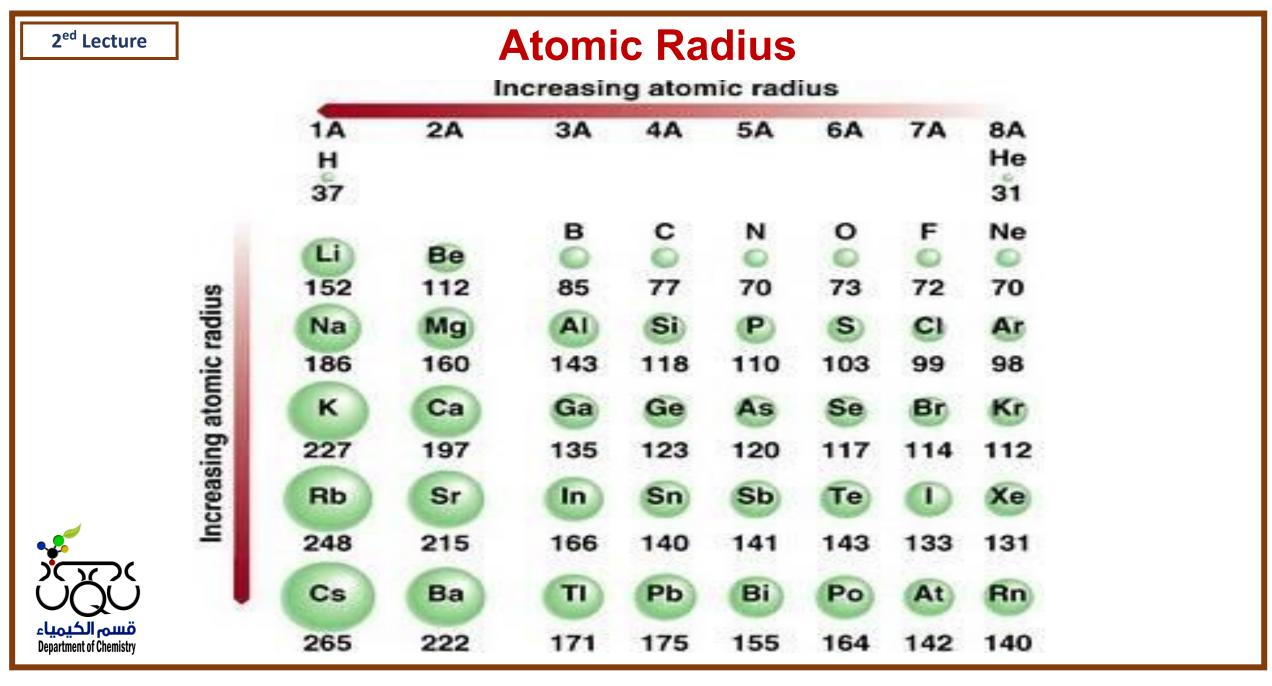
$$n = 3$$
 $l = 1$

$$m_{i} = -1, 0, or +1$$

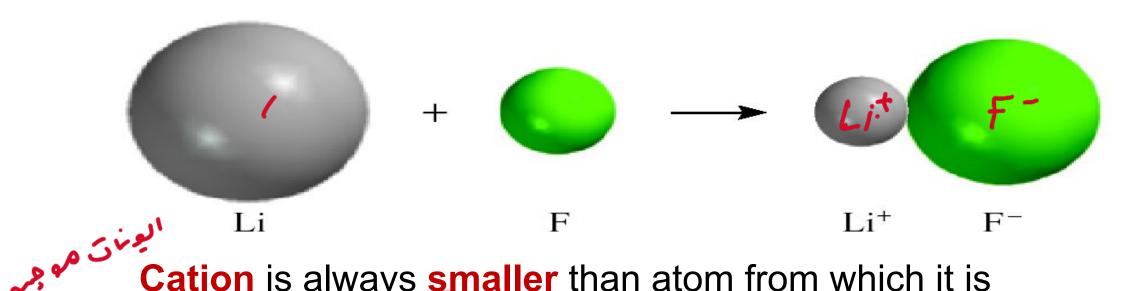
$$m_s = \frac{1}{2} \text{ or } -\frac{1}{2}$$


Chemical Properties of Elements in Periodic Table


Atomic Radius


Ionization Energy

Electronic Affinity



Atomic Radius

<u>Cation</u> is always <u>smaller</u> than atom from which it is formed.

Anion is always larger than atom from which it is formed.

Lonization Energy

The minimum energy required to remove an electron from a gaseous atom in its ground state

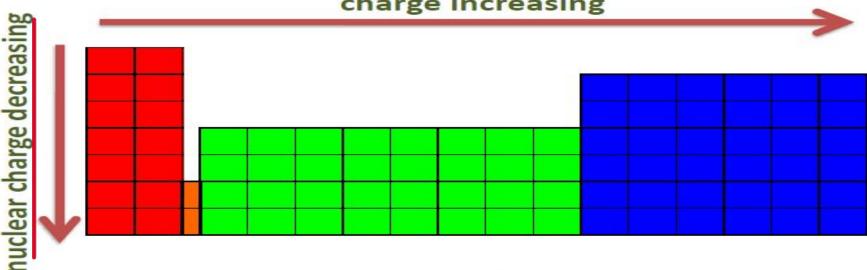
$$M(g) + energy = M^+ + e^-$$

$$M_{(g)} + IE_1 \longrightarrow M^+_{(g)} + e^-$$

Second ionization
$$M^{+}_{(g)} + IE_{2} \longrightarrow M^{2^{+}}_{(g)} + e^{-}$$

Third ionization

$$M^{2+}(g) + IE_3 \longrightarrow M^{3+}(g) + e^{-}$$


$$IE_1 < IE_2 < IE_3$$

خ ندراناین الاولی امل مرانات رانات رانات ا

Ionization Energy

No of protons increasing, the effective nuclear charge increasing

No of energy levels increasing, the effective

Ionization energy decreasing

كلاتوكالليمين نرادان طامة التابن كلاتكان نادان طامة التابن

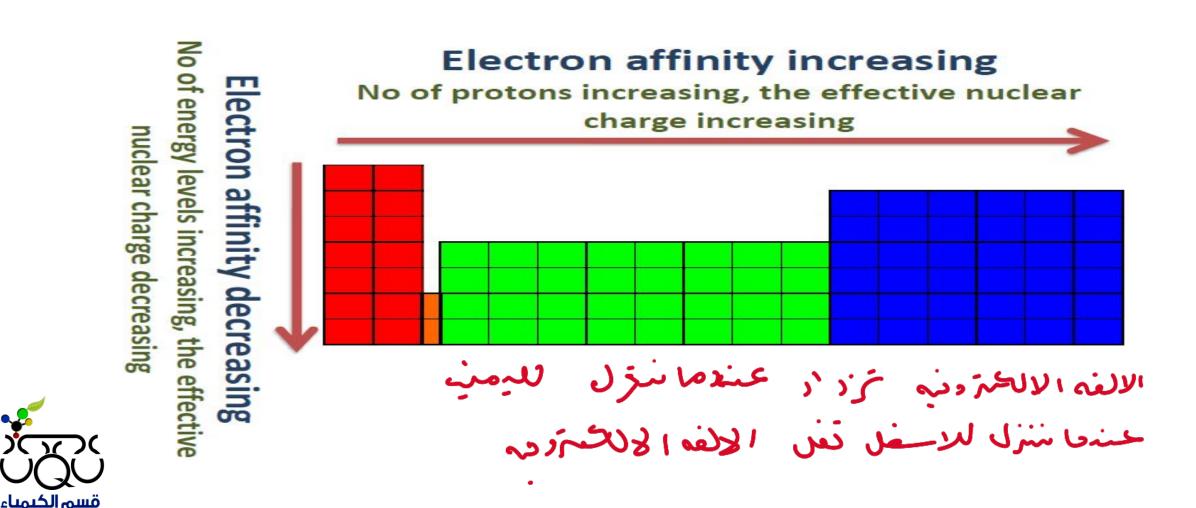
Electronic Affinity الالندالالكرونيم

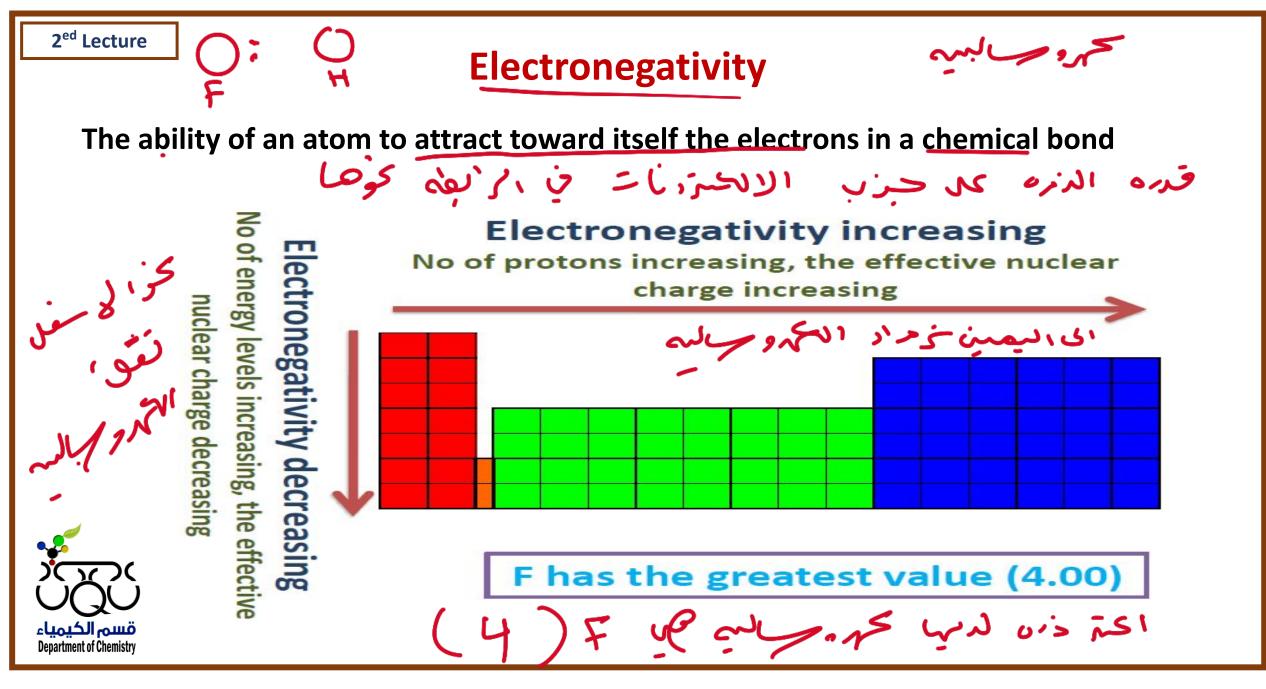
Electronic affinity is the negative of the energy change that occurs when an electron is accepted by an atom in the gaseous state to form an anion.

$$F_{(g)} + e^{-}$$

$$\Delta H = -328 \text{ kJ/mol}$$

$$EA = +328 \text{ kJ/mol}$$


$$O_{(g)} + e^{-} O_{(g)}$$

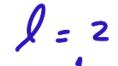

$$\Delta H = -141 \text{ kJ/mol}$$

$$EA = +141 \text{ kJ/mol}$$

Department of Chemistry

Electronic Affinity

Chose the correct answer


- 1. Protons are located in the nucleus of the atom. A proton has
- a) No charge
- b) A negative charge
- c) A positive and a negative charge
- d) A positive charge
- **3.** The atomic number of an atom is
- a) The mass of the atom
- b) The number of protons added to the number of neutrons
- c) The number of protons
- d) Negatively charged

l:0 l:

- 2. Neutrons are in the nucleus of the atom. A neutron has
- a) A positive charge
- b) No charge
- c) A negative charge
- d) Twice as much positive charge as a proton

- **4.** The atoms of the same element can have different isotopes. An isotope of an atom
- a) Is an atom with a different number of protons
- (D) s an atom with a different number of neutrons
- c) Is an atom with a different number of electrons
- d) Has a different atomic number

5. Which one of the following sets of four quantum numbers that most likely describe the last electron of the **Zn atomic**

number is 30)?

a)
$$n = 3, l = 2, m_1 = 2, ms = -\frac{1}{2}$$

b)
$$n = 3, l = 1, m_l = 1, ms = + \frac{1}{2}$$

c)
$$n = 3, I = 3, m_1 = 2, ms = -\frac{1}{2}$$

d)
$$n = 4, l = 2, m_1 = 0, ms = + \frac{1}{2}$$

e)
$$n = 4, l = 3, m_1 = 3, ms = -\frac{1}{2}$$

$$n=3$$
 $l=2$

6. Which one of the following sets of quantum numbers can correctly represent a **3***p* orbital?

$$n = 3$$

$$I = 1$$

$$m_i = 2$$

$$n = 1$$

$$m_i = 3$$

$$m_l = 3$$

$$n=1$$
 $n=3$

$$n=3$$

$$m_i = \frac{1}{2}$$

$$m_l = 1$$

$$n = 3$$

$$n=3$$

$$m_l = 3$$
 $m_l = 1$ $m_l = -1$ $m_l = 1$

$$n = 3$$

$$I = 0$$

$$m_l = 1$$

7. True or false?

- 1. Electrons are found in the nucleus of an atom. False
- 2. Neutrons and electrons are attracted to one another. False
- 3. The first energy level of atom is closest to the nucleus. True
- 8. Fill-in-the-blank

Isolopes

- 1. Different atoms of the same element can have a different number of ______. neutrons
- 3.When an atom gains an electron, it forms a ______ negative ion.

Questions

Choose the correct answer:

- 1- Tend to accept an electron or more:
 - a) Metals
 - b) Nonmetals
 - c) Metaloids
 - d) None of the previous
- 2- The minimum energy required to remove an electron from a gaseous atom in its ground state
 - a) Atomic radius
 - b) Ionization energy
 - c) Electronic affinity
 - d) Electronegativity

- 3- The ability of an atom to attract toward itself the electrons in a chemical bond:
 - a) Atomic radius
 - b) Ionization energy
 - c) Electronic affinity
 - d Electronegativity
- 4- First ionization energy is second ionization energy.
 - a) equals to
 - b) higher than
 - c) lower than
 - d) None of the previous

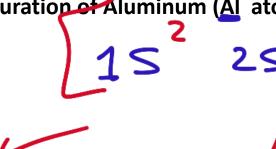
Questions

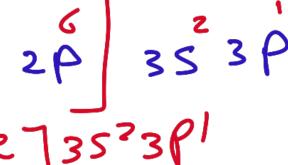
Choose the correct answer:

- 5- The negative of the energy change that occurs when an electron is accepted by an atom in the gaseous state to form an anion:
 - a) Atomic radius
 - b) Ionization energy
 - c) Electronic affinity
 - d) Electronegativity
- 6- Cation is always atom from which it is formed.
 - a) smaller than
 - b) larger than
 - c) equal
 - d) none of the previous

- **7-** Atoms lose electrons so that has a noble-gas outer electron configuration.
 - a) electrons
 - b) cation
 - c) anions
 - d) atoms

- 8- The most favorable electronic configuration of Fe³⁺ (Fe atomic number = 26) is:
 - <u>a) [Ar]4s⁰3d⁵</u>
 - b) [Ar]4s¹3d⁴
 - c) [Ar]4s²3d³
 - d) $[Ar]4s^23d^5$

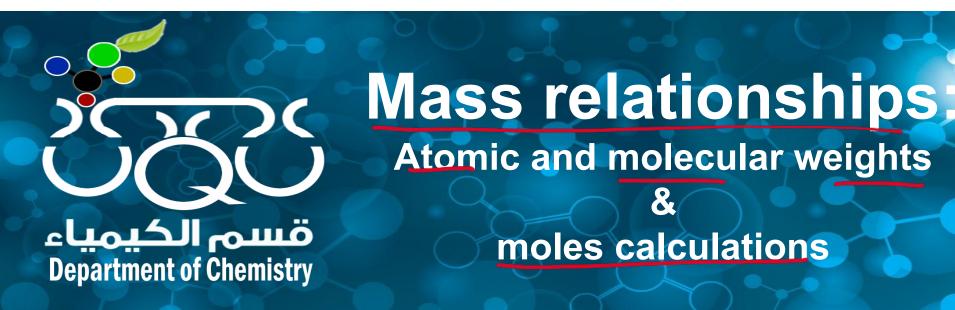




Questions

Choose the correct answer:

- 9. The electronic configuration of Aluminum (Al atomic number = 13) is:
 - a) [Ne] 2s²2p¹
 - b) [Ne] 2s¹2p²
 - c) [Ne] 3s²3p¹
 - d) [Ne] 3s¹3p²


- 10. The electronic configuration of Sodium (Na atomic number = 11) is:
 - a) 1s²2s²2p⁶3s¹
 - b) $1s^22s^22p^53s^2$
 - c) $1s^22s^22p^73s^0$
 - d) None of the previous

Chapter

3

COURSE NAME: CHEMISTRY 101

COURSE CODE: 402101-4

Atomic Mass (مسم) مده العتل الذرية

The mass of an atom in atomic mass units (amu)

Atomic number

12.01 **→**Atomic mass

The atomic mass of elements is relative to a standard atom ¹² C (6 protons, 6 neutrons)

الورن الذري الخكوات المكاورة الأدري الخكوات المكاورة الأدري الأدري الأدري المكاورة المكاورة الأدري الأدري الأدري المكاورة الأدري الأدر

The mass of an element atoms per one mole (g/mol)

= Atomic Mass numerically

حمله الدرات المنع لك مول

Mole (mol)

The amount of a substance that contains as many elementary particles (atoms, molecules or ions), where each mole has number of 6.022×10^{23} particles.

1 mole= 6.022 × 10²³ particles = Avogadro's number N

خره 1 mol Al = 6.02 × 10²³ atoms

ري 1 mol CO₂ = 6.02× 10²³ molecules

1 mol NaCl = 6.02×10^{23} Na⁺ ions = 6.02×10^{23} Cl⁻ ions

The number of atoms in exactly 12 g of ¹²C is one mole

عدد الجسميات = عدد اكولاز به عدد اموياد، و

نخسبه الذرية (ككه مرل و هرم لهنم) بخسع كل الحكل للضام فرا كي

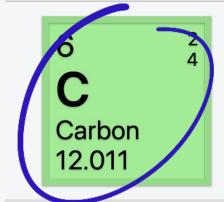
 $\frac{W_t}{Mw} = \frac{(9)}{\sin^2 (9)} = \frac{1}{\sin^2 (9)}$

الكتكم = عدد المولات به المحكم الموليم (We(g)

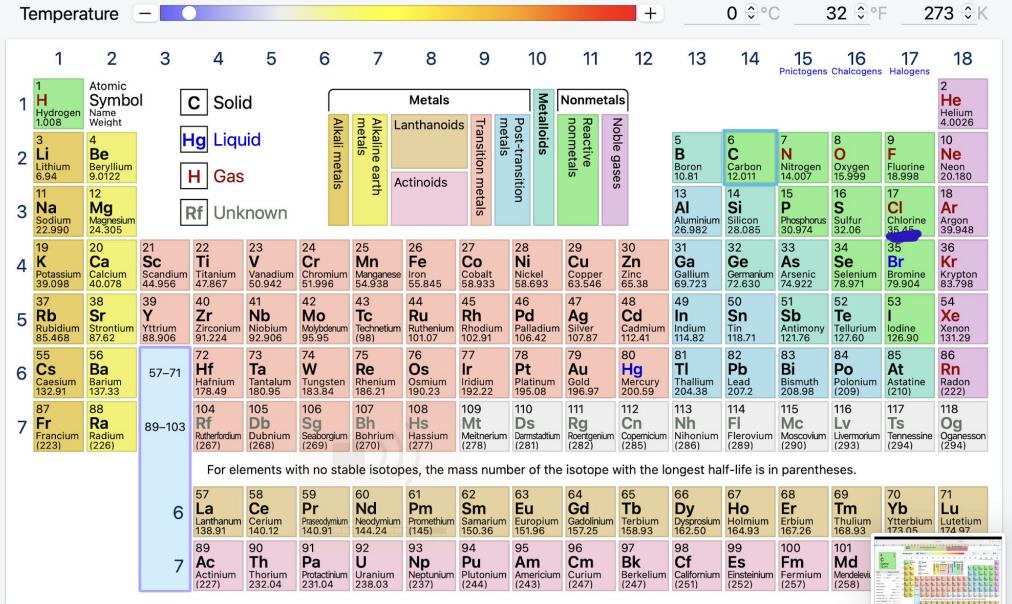
Molar Mass (Atomic weight A_w):

```
1 mol C atoms = 12.01 g A_w of C = 12.01* g/mol

1 mol Cl atoms = 35.45 g A_w of Cl = 35.45* g/mol

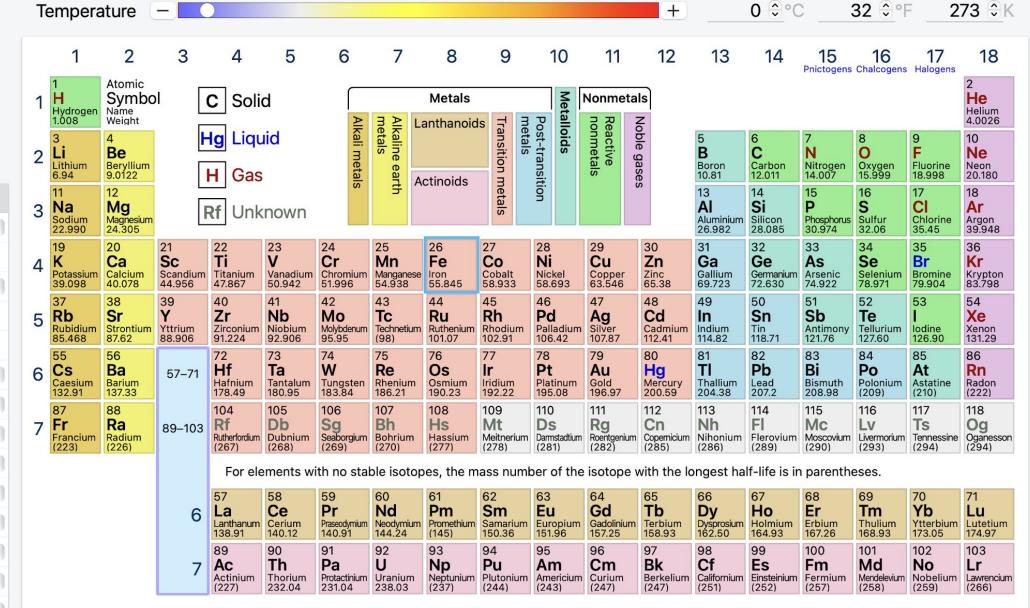

1 mol Fe atoms = 55.85 g A_w of Fe = 55.85* g/mol
```

*(get from periodic table)



Think: What is the difference between the mass and weight?

Series	Reactive nonmetals
Write-up	Carbon Wikipedia \$
State at 0 🗘 °	C \$ Solid
Weight	12.011 u 💠
Energy levels	2, 4
Electronegativity	2.55
Melting point	3,642 °C \$
Boiling point	3,642 °C \$
Electron affinity	153.9 kJ/mol \$
Ionization, 1st 🛊	1,086.5(kJ/mol \$)
Radius, calculated	\$) 67(pm \$)
Hardness, Brinell	N/A MPa \$
Modulus, bulk \$	33 GPa 💠
Density, STP 💠	2,260 kg/m³ \$
Conductivity. therm	nal 📤 140 W/mK ੈ


17 2 8 7 Cl Chlorine 35.45

Series	Reactive nonmetals
Write-up	Chlorine Wikipedia 🛊
State at 0 😌	°C 💠 Gas
Weight	35.45 u 💠
Energy levels	2, 8, 7
Electronegativity	3.16
Melting point	-101.5 °C 🛊
Boiling point	-34.040(°C \$)
Electron affinity	349 kJ/mol \$
Ionization, 1st	\$ 1,251.2 kJ/mol \$
Radius, calculated	d \$ 79 pm \$
Hardness, Brinell	N/A MPa 💠
Modulus, bulk	\$ 1.1 GPa \$
Density, STP \$	3.214 kg/m³ 🛊
Conductivity ther	mal A 0 (M//m// A)

Te	empera	ture	-									+	2	0 000		32 ♀ º।	2	73
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 Prictogens	16 Chalcogens	17	18
1	1 Hydrogen 1.008	Atomic Symbo Name Weight	ol [C Soli	d	P	3 ≥ 1	Metals anthanoid	s 🕇 🖪	- 일	Nonmeta					3	, iaiogene	2 He Helium 4.0026
2	3 Li Lithium 6.94	4 Be Beryllium 9.0122	_	Hg Liqu		Alkali metals	kaline ea	ctinoids	Transition metals	alloids Post-transition	Reactive	Noble gases	5 B Boron 10.81	6 C Carbon 12.011	7 N Nitrogen 14.007	8 O Oxygen 15.999	9 F Fluorine 18.998	10 Ne Neon 20.180
3	Na Sodium 22.990	Mg Magnesium 24.305		Rf Unk	nown	S	# 6	etiiloids	netals	tion		S	13 Al Aluminium 26.982	14 Si Silicon 28.085	15 P Phosphorus 30.974	16 S Sulfur 32.06	17 Cl Chlorine 35.45	18 Ar Argon 39.948
4	19 K Potassium 39.098	20 Ca Calcium 40.078	21 Sc Scandium 44.956	22 Ti Titanium 47.867	Vanadium 50.942	Cr Chromium 51.996	25 Mn Manganese 54.938	26 Fe Iron 55.845	27 Co Cobalt 58.933	28 Ni Nickel 58.693	29 Cu Copper 63.546	30 Zn Zinc 65.38	31 Ga Gallium 69.723	32 Ge Germanium 72.630	AS Arsenic 74.922	34 Se Selenium 78.971	35 Br Bromine 79.904	36 Kr Krypton 83.798
5	37 Rb Rubidium 85.468	38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nb Niobium 92.906	Mo Molybdenum 95.95	43 Tc Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.91	46 Pd Palladium 106.42	47 Ag Silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn Tin 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127.60	53 lodine 126.90	54 Xe Xenon 131.29
6	55 Cs Caesium 132.91	56 Ba Barium 137.33	57–71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.97	Hg Mercury 200.59	81 TI Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.98	84 Po Polonium (209)	At Astatine (210)	86 Rn Radon (222)
7	87 Fr Francium (223)	88 Ra Radium (226)	89–103	104 Rf Rutherfordium (267)	105 Db Dubnium (268)	106 Sg Seaborgium (269)	107 Bh Bohrium (270)	108 Hs Hassium (277)	109 Mt Meitnerium (278)	110 Ds Darmstadtium (281)	Rg Roentgenium (282)	112 Cn Copernicium (285)	113 Nh Nihonium (286)	114 FI Flerovium (289)	115 Mc Moscovium (290)	116 LV Livermorium (293)	117 Ts Tennessine (294)	118 Og Oganesson (294)
	For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.																	
			6	57 La Lanthanum 138.91	58 Ce Cerium 140.12	59 Pr Praseodymium 140.91	60 Nd Neodymium 144.24	61 Pm Promethium (145)	62 Sm Samarium 150.36	63 Eu Europium 151.96	64 Gd Gadolinium 157.25	65 Tb Terbium 158.93	66 Dy Dysprosium 162.50	67 Ho Holmium 164.93	68 Er Erbium 167.26	69 Tm Thulium 168.93	70 Yb Ytterbium 173.05	71 Lu Lutetium 174.97
			7	89 Ac Actinium (227)	90 Th Thorium 232.04	91 Pa Protactinium 231.04	92 U Uranium 238.03	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am	96 Cm	97 Bk Berkelium (247)	98 Cf	99 Es	100 Fm Fermium (257)	101 Md Mendelevium (258)	No Nobelium (259)	103 Lr Lawrencium (266)

26 2 8 14 2 Iron 55.845

Series	Transition metals
Write-up	Iron Wikipedia 🛊
State at0 © C	\$ Solid
Weight	55.845 u \$
Energy levels	2, 8, 14, 2
Electronegativity	1.83
Melting point	1,538 °C \$
Boiling point	2,861(°C \$)
Electron affinity	15.7 kJ/mol \$
Ionization, 1st 💠	762.5 kJ/mol \$
Radius, calculated	\$ 156 pm \$
Hardness, Brinell \$	490 MPa 💠
Modulus, bulk \$	170 GPa 💠
Density, STP 💠	7,874 kg/m³ \$
Conductivity. therma	80 W/mK

الکند 'بخری الکنل الخرار الکند بر کر کر کرد. Molar Mass (<u>Molecular weight M</u>_w): M_w

The sum of atomic weights of 1 mol of the molecule

$$0 \text{ AiS } \times 1 + H \text{ AIS } \times 2 = H_20 \text{ Jais}$$
 $Mw(H_{20}) = 2 \times Aw(H) + Aw(0) = 2 \times 1.008 + 15.999$
 $M_w \text{ of 1 mol of H}_2O = 2 (A_w \text{ of H}) + A_w \text{ of O}$
 $= (2 \times 1.008) + 16$
 $= 18.02 \text{ g/mol}$

Nacl =
$$A_{W}(N_{9}) + A_{W}(Cl)$$

22.99 + 35.45 = 58.44

9/mol

That are the molecular weights of the following:
$$M_{w}(C_{2}H_{6}) = 2 \times A_{w}(C) + 6 \times A_{w}(H) = 2 \times 12.01 + 6 \times 1.008 = 30.07$$

$$N_2O_4 = 2Aw(N) + 4xAw(0) = 2x14.01 + 4x 16 = 92.02 9/ma$$

$$C_8H_{18}O_4N_2S = 8Aw(c) + 18Aw(H) + 4Aw(o) + 2Aw(N) + Aw(s)$$

 $C_8H_{18}O_4N_2S = 8x12.01 + 18x1.008 + 4x16 + 2x14.01 + 32.06$

$$Al_{2}(CO_{3})_{3} = 2 A_{v}(Al) + (A_{v}(C) + 3 A_{v}(O)) \times 3$$

$$= 2 \times 26.48 + (12.61 + 3 \times 16) \times 3 = 233.44$$

$$MgSO_4.7H_2O_=A_{W}(Mg)+A_{W}(s)+4XA_{W}(o)+7(2A_{W}(H)+A_{W})$$

Number of moles (n)

$$n = \frac{wt(g)}{Mw(g/mol)}$$
 عدر کوروء یا العکام بازنیم

Remember: No. of particles = No. of moles × Avogadro's number

Example

$$n = \frac{W_t}{Mw} = \frac{6.07}{1}$$

Methane (CH₄) is the principal component of the natural gas. How many moles of methane are present in 6.07 g of CH₄? איייני ואפנים ייי איייני

$$M_{w}$$
 of $CH_{4} = 12.01 + (4 \times 1.008) = 16.04 \text{ g/mol}$
 $M_{w} = 16.04 \text{ g/mol}$

n of
$$CH_4 = 6.07 g_{(CH4)} \times (\frac{1 \text{mol}_{(CH4)}}{16.04 g_{(CH4)}}) = 0.378 \text{ mol}_{(CH4)}$$

$$n = \frac{W_b}{M_W} = \frac{6.07}{16.04} = 0.378 \text{ mol}$$

WE=NXMW

Learning check

What is the number of moles in 21.5 g CaCO₂?

$$M_W = A_W(Ca) + A_W(C) + 3 \times A_W(0) | n = \frac{W^2}{M_W} = \frac{21.5}{100.0}$$

= 40.08 + 12.01 + 3 × 16
 $M_W = 100.09.09.00$

= 0.215 mol

What is the mass in grams of 0.6 mol C_4H_{10} ?

$$Mw = 4Aw(C) + 10Aw(H)$$

= $4x12.01 + 10x1.008$
= 58.12

Wt= n x Mm $=0.6\times58.12=34.879$

How many atoms of Cu are present in 35.4 g of Cu?

$$0$$
 کول الکته ای عدو مولات $\frac{Wt}{AW} = \frac{35.4}{63.55} = 0.557$ mol

Percent Composition of Compounds

حساب السنبه العزنية للعنفر في اعركب

Mass percent (weight percent) of each element in a

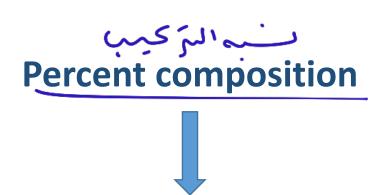
$$% x = \frac{m \times A_w(x)}{Mw} \times 100$$

 $m{n}$ is number of atoms of each element in the compound

ExampleCalculate the mass percent of each element in ethanol (C₂H₅OH)?

$$\%x = \frac{n \times A_w(x)}{Mw} \times 100$$
 $\times 100$ $\times 10$

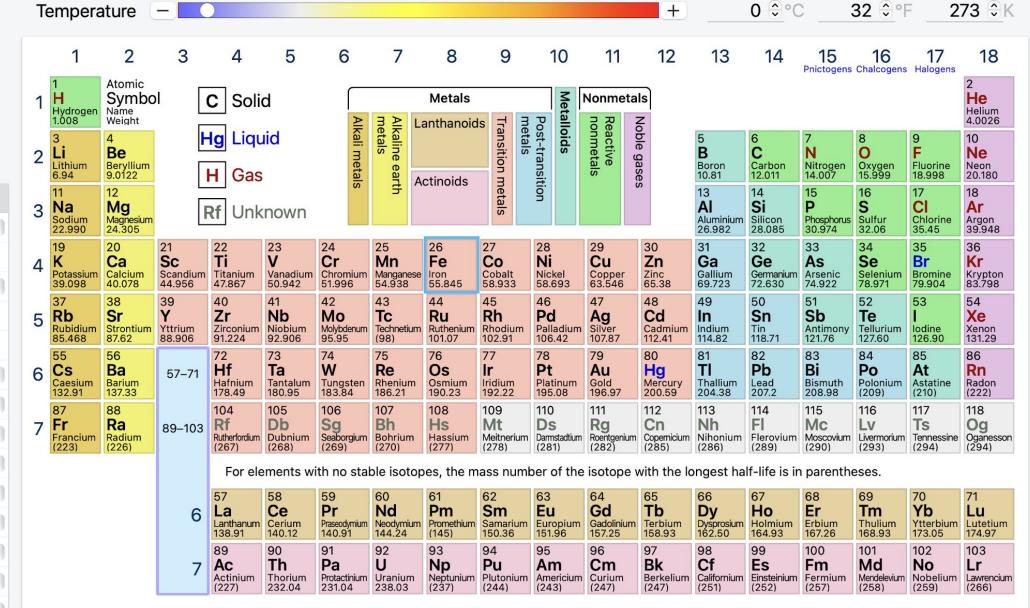
Mass of 1 mol (molar mass) of $C_2H_5OH = 24.02+6.048+16.00= 46.07$ g/mol



$$C/ = \frac{2 \times 12.01}{46.07} \times 100 / = 52.14%$$

$$H? = \frac{6 \times 1.008}{36.07} \times 100? = 13.13?$$

$$6\% = \frac{16}{46.07} \times 100\% = 34.73\%$$


:Determining the Formula of a Compound

 $0.00000772 = 7.72 \times 10^{-6}$ (3 SF)

26 2 8 14 2 Iron 55.845

Series	Transition metals
Write-up	Iron Wikipedia 🛊
State at0 © C	\$ Solid
Weight	55.845 u \$
Energy levels	2, 8, 14, 2
Electronegativity	1.83
Melting point	1,538 °C \$
Boiling point	2,861(°C \$)
Electron affinity	15.7 kJ/mol \$
Ionization, 1st 💠	762.5 kJ/mol \$
Radius, calculated	\$ 156 pm \$
Hardness, Brinell \$	490 MPa 💠
Modulus, bulk \$	170 GPa 💠
Density, STP 💠	7,874 kg/m³ \$
Conductivity. therma	80 W/mK

Question 1

= 215,49

Determine the number of moles of aluminum in 0.2154 kg of Al.

$$n = \frac{Wt}{MW} = \frac{215.4}{26.9}$$

7.984 x 10-3 mol

Question 2

How many phosphorus atoms are there in 2.57 g of P?

$$0 n = \frac{Wt}{MW} = \frac{2.57}{30.97} = 0.08298$$

Question 3

One mole of H2

- contains 6.0 x 10²³ H atoms
- contains 6.0 x 10²³ H₂ molecules **B**
- contains 1 g of H₂
- is equivalent to 6.02×10^{23} g of H₂
- None of the above

Question 4

How many oxygen atoms are present in 5.2 g of 02?

5.4 x 10-25 atoms

5.4 x 10-25 atoms
$$M_W = 2 \text{ Aw}(0)$$

Hz molecules

9.8 x 1022 atoms

$$=2\times16=32$$

- \bigcirc 2.0 x 1023 atoms
- 3.1 x 1024 atoms
- 6.3 x 1024 atoms

①
$$N = \frac{W_t}{Mw} = \frac{5.2}{32} = 0.1625 \text{ mole}$$

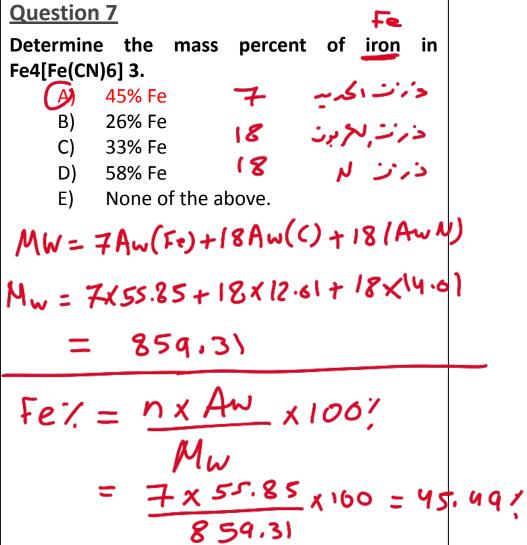
@ moleones = n x NA = 0.1625 x 6.022 x W

atom = 9.785 x1022 x2 =

Question 5

How many protons and neutrons are in sulfur-33?

- A) 2 protons, 16 neutrons
- **B**) 16 protons, 31 neutrons
- 16 protons, 17 neutrons
- D) 15 protons, 16 neutrons


Question 6

What is the mass of 5.45 x 10-3 mol of glucose, C6 H12O6?

- A) 0.158 g
- B) 982 g
- C) 3.31 x 104 g
- **6** 0.982 g
- E) None of the above.

Mw = 6x12.01+12x1.008+6x16 Mw = 180-156 9/mol

Chemical reaction and chemical equation

Chapter

4

COURSE NAME: CHEMISTRY 101

COURSE CODE: 402101-4

Chemical Reactions

Reactants

Products

A process in which one or more substances is .changed into one or more new substances

ن منی عنیر المحاده او الحمة الاساح ماده او الحمة الاساح ماده او الحمة الاساح عاده او الحمة الاساح عاده او الحمة العرب عند عاد الحمة العرب عند عاد الحمة العرب عند عاد الحمة العرب عند عاد الحمة الحمة

عمون مه اعد لنب العب ليخول اى عمول زلنب صالل عمود مه اعدد عهر الاعجب

Chemical Equations

العادي الكيميانية حتير عمر لتفاحل الحيمياني وخبات .lt is a way to represent the chemical reaction

:It shows us

- The chemical symbols of reactants and products
 خنیانی، منزیانی، مانای، علی در مانای، در مانای، مانای، در مانا
- The physical states of reactants and products—(s), (l), (g), (aq)

$$2H_{2}(g) + O_{2}(g)$$
 \longrightarrow $2H_{2}O(I)$ \longrightarrow $U = 0.54$ $U = 0.52$

Reactants (starting materials)

Products (materials formed)

Balancing Chemical Equations

The number of atoms of each element must be the same on both sides of the equation.

Reactants	Products
4c	4c
18H	/2 H
140	140

$C_2H_6 + \frac{7}{2}O_2$	
2C H + 7O	→ 100 + 6H 0

$2C_2H_6 + 7O_2$	$\longrightarrow 4CO_2 + 6H_2O$
------------------	---------------------------------

Reactants	Products
4 C	4 C
12 H	12 H
14 0	14 O

Balance the following equations:

(a)
$$2C + O_2 \longrightarrow 2CO$$

(b) $2CO + O_2 \longrightarrow 2CO_2$
(c) $H_2 + Br_2 \longrightarrow 2HBr$
(d) $2K + 2H_2O \longrightarrow 2KOH + H_2$
(e) $2Mg + O_2 \longrightarrow 2MgO$
(f) $2O_3 \longrightarrow 3O_2$
(g) $2H_2O_2 \longrightarrow 2H_2O + O_2$
(h) $N_2 + 3H_2 \longrightarrow 2NH_3$
(i) $Zn + 2AgCl \longrightarrow ZnCl_2 + 2Ag$
(j) $S_8 + 8O_2 \longrightarrow 8SO_2$

Stoichiometry

The quantitative study of reactants and products in a chemical reaction

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

The Mole Method:

Stoichiometric coefficients in a chemical equation can be interpreted as the number of moles of each substance.

$$N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g)$$

N ₂	1 mole 6.022 ×10 ²³ molecules
H ₂	3 mole 3×6.022 ×10 ²³ molecules
NH ₃	2 mole 2×6.022 ×10 ²³ molecules

Mole Ratios

$$N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g)$$

Recall that the coefficient on N_2 is 1 but is not explicitly written in the reaction Coefficients:

$$N_2 = 1$$

 $H_2 = 3$
 $NH_3 = 2$

Using the coefficients we can write mole ratios

Definition: mole ratio gives the relative amounts of reactants and products

Mole Ratios

$$N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g)$$

For each 1 mole of N₂, 3 moles of H₂ are required.

$$\frac{1 \, mol \, N_2}{3 \, mol \, H_2}$$

For each 1 mole of N₂, 2 moles of NH₃ will be produced

$$\frac{1 \, mol \, N_2}{2 \, mol \, NH_3}$$

For 3 moles of H₂, 2 moles of NH₃ will be produced

$$\frac{3 \, mol \, H_2}{2 \, mol \, NH_3}$$

MOLE to MOLE Stoichiometry

$$N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g)$$

If you are given 6 moles of H₂, how many moles of N₂ do you need?

$$\frac{6 \, mol \, H_2}{3 \, mol \, H_2} * \frac{1 \, mol \, N_2}{3 \, mol \, H_2} = 2 \, mol \, N_2$$

If you are given 0.5 moles of H₂, how many moles of N₂ do you need?

$$\frac{0.5 \, mol \, H_2}{3 \, mol \, H_2} * \frac{1 \, mol \, N_2}{3 \, mol \, H_2} = 0.2 \, mol \, N_2$$

You can flip the mole ratios around if you are asked the following: If you are given 4 moles of N2, how many moles of H2 do you need?

$$\frac{4 \, mol \, N_2}{1 \, mol \, N_2} * \frac{3 \, mol \, H_2}{1 \, mol \, N_2} = 12 \, mol \, H_2$$

 Use the same method for finding the amount of product that will be produced. Given 6 moles of H₂, how much NH₃ will be made?

$$\frac{6 \, mol \, H_2}{3 \, mol \, H_2} * \frac{2 \, mol \, NH_3}{3 \, mol \, H_2} = 4 \, mol \, NH_3$$

Example

Silicon tetrachloride (SiCl₄) can be prepared by heating <u>Si</u> in chlorine gas:

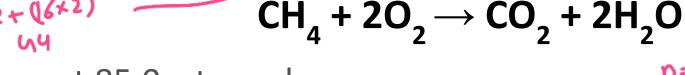
1Si (s) +
$$2Cl_2(g) \rightarrow SiCl_4(I)$$

In one reaction, 0.507 mole of SiCl₄ is produced. How many moles of molecular chlorine were used in the reaction?

Cl₂ SiCl₄ 2 mol 1 mol 0.507 moles Silly . 2 moles our 1 moles Siety

?? 0.507 mol

1.01 moles Clz


n of Cl_2 used = $(0.507 \text{ mol}_{SiCl4} \times (2 \text{ mol}_{Cl2}/1 \text{ mol}_{SiCl4})$ = 1.01 mol_{Cl2}

If 85.0 g of CH₄ is consumed by a person over a certain period,

what is the <u>mass of CO</u>, produced?

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Convert 85.0 g to moles:

n (CH₄) = wt/Mw = (85.0/16.04) = 5.30 mol_(CH4)

CH₄ + 2O₂
$$\rightarrow$$
 CO₂ + 2H₂O

1 mole of CH₄

1 mole of CO₂

5.30 moles

??

 $\frac{mass}{85.9}$
 $\frac{mass}{85.9}$
 $\frac{mass}{85.9}$
 $\frac{mass}{16}$
 $\frac{mass}{16}$

 $n (CO_2) = 5.30 \text{ mol}_{(CH4)} \times (1 \text{mol}_{(CO2)} / 1 \text{mol}_{(CH4)}) = 5.30 \text{ mol}_{(CO2)}$ wt $(CO_2) = n \times Mw = 5.30 \text{ mol}_{(CO_2)} \times (44.01g_{(CO_2)} / 1mol_{(CO_2)}$ = 233.2 g = 2.33×10^{2} g_(CO2) $W_t = 5.3 \times 44 = 233.29$

CH4+202 - CO2 +2140

Question 1

When it is correctly balanced, the correct coefficients for the equation below are

63.55+2X14+6x16 Question 2

What mass of copper(II) nitrate would be produced from the complete reaction of 45.6 g of copper, according to the chemical reaction shown below?

Cu+2AgNO₃
$$\rightarrow$$
Cu(NO₃)₂+2Ag Cu

A) 0.72 g

moles

B) 21.1 g

C) 98.7 g

135 g

E) 187 g

Cu(NO₃)₂+2Ag

Cu(NO₃)₂

moles

 6.72 moles
 6.72

Question 3

Calculate the number of moles of H_O formed when 0.200 mole of Ba(OH), is treated with 0.500 mol of HClO₃ according to the chemical reaction shown below.

$$Ba(OH)_2 + 2HCIO_3 ----> Ba(CIO_3)_2 + 2H_2O$$

- 1.00 mol
- 0.600 mol
- c) 0.500 mol
- (D)) 0.400 mol
- 0.200 mol

187,6

Question 4

What is the coefficient for <u>CO2</u> when the following chemical equation is properly balanced using the smallest set of whole numbers?

$$2C_4H_{10} + O_2 - SCO_2 + H_2O$$

- **A**) 1
- B) 4
- **C)** 6
- (D) 8
- E) 12

Question 5

When it is correctly balanced, the correct coefficients for the equation below are

- A) 1, 3, 1, 1
- (B) 1, 3, 1, 3
- C) 1, 1, 1, 3
- D) 2, 3, 2, 3

Question 6

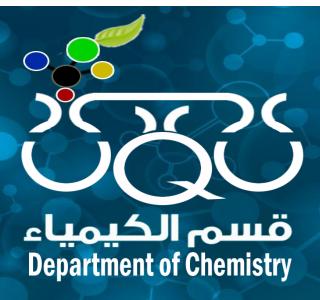
What mass of copper(II) nitrate would be produced from the complete reaction of 45.6 g of copper, according to the chemical reaction shown below?

$$Cu+2AgNO_3 \rightarrow Cu(NO_3)_2+2Ag$$

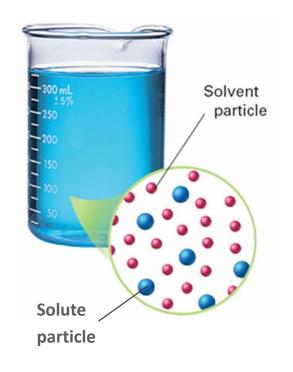
- A) 0.72 g
- B) 21.1 g
- c) 98.7 g
- O) 135 g
- E) 187 g

Question 7

Calculate the number of moles of H_2O formed when 0.200 mole of $Ba(OH)_2$ is treated with 0.500 mol of $HClO_3$ according to the chemical reaction shown below.


$$Ba(OH)_2 + 2HCIO_3 ----> Ba(CIO_3)_2 + 2 H_2O$$

- A) 1.00 mol
- B) 0.600 mol
- C) 0.500 mol
- D) 0.400 mol
- E) 0.200 mol


Chemical Reactions in Solutions & Concentrations

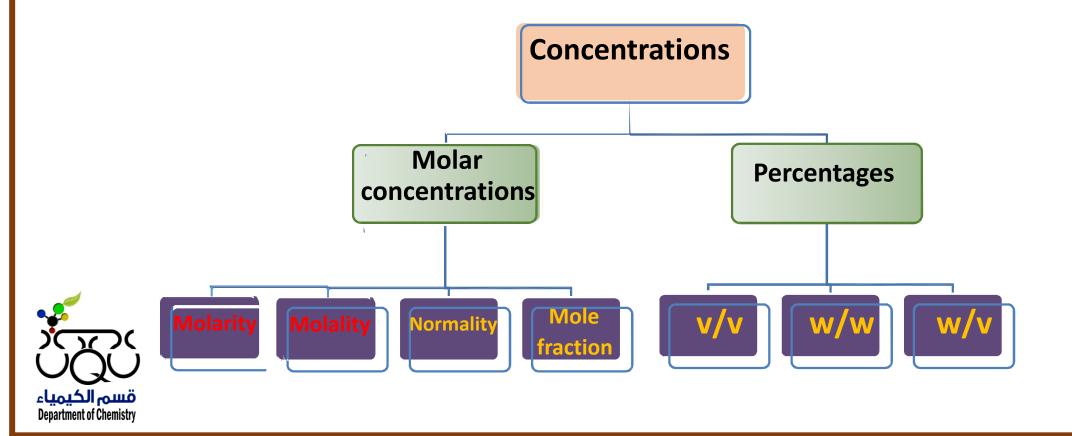
Chapter

COURSE NAME: CHEMISTRY 101

COURSE CODE: 402101-4

Solutions

Solution: a homogeneous mixture of two or more substances
Solute: a substance that is being


dissolved (smaller amount)

Solvent: a substance which dissolves a solute (larger amount)

Concentrations

The *concentration* of a solution is the amount of solute present in a given quantity of a solvent or solution.

Molarity

The number of moles of solute dissolved in one liter of solution.

Molarity
$$(M) = \frac{\text{moles of solute}}{\text{liters of solution}}$$

What is the unit of molarity? What is the relationship between weight and molarity?

Example

A solution has a volume of 2.0 L and contains 36.0 g of glucose ($C_6H_{12}O_6$). If the molar mass of glucose is 180 g/mol, what is the molarity of the solution?

No. of mol of glucose = wt (g) / Mw (g/mol) = 36.0 g/ 180 g/mol = 0.2 mol

M = n (mol) / V (L) = 0.2 mol / 2.0 L = 0.1 mol/L

Molality

The number of moles of solute dissolved in one kilogram of solvent

Molality (m)

 $m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}}$

Molarity (M)

$$M = \frac{\text{moles of solute}}{\text{liters of solution}}$$

Example

What is the molality of a 5.86 M ethanol (C_2H_5OH) solution whose density is 0.927 g/mL?

Assume 1 L of solution:

5.86 moles ethanol = 270 g ethanol

927 g of solution (1000 mL x 0.927 g/mL)

mass of solvent = mass of solution – mass of solute

$$= 927 g - 270 g = 657 g = 0.657 kg$$

$$m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}} = \frac{5.86 \text{ moles C}_2 \text{H}_5 \text{OH}}{0.657 \text{ kg solvent}} = 8.92 m$$

Learning Check

What is the concentration of a solution in mol/L when 80 g of calcium carbonate, CaCO₃, is dissolved in 2 L of solution?

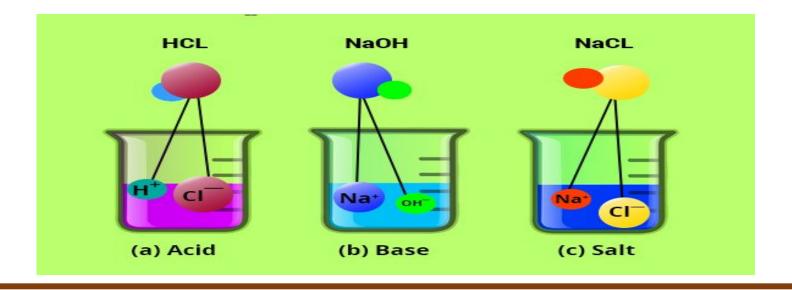
How many liters of 0.25 M NaCl solution must be measured to obtain 0.1 mol of NaCl?

A student needs to prepare 250 ml of 0.1 M of $Cd(NO_3)_2$ solution. How many grams of cadmium nitrate are required?

Type of Chemical Reactions in Aqueous Solutions

1) Acid-Base Reactions

2) Oxidation-Reduction Reactions


3) Precipitation Reactions

I. Acid-Base Reactions

acid + base → salt + water

HCl (aq) + NaOH (aq)
$$\rightarrow$$
 NaCl (aq) + H₂O (l)

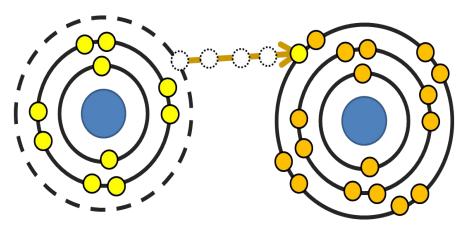
II. Oxidation-Reduction Reactions

Redox reactions are electron transfer reactions

$$Mg + 2Ag^+ \rightarrow Mg^{2+} + 2Ag$$

Half-reactions:

Mg (s)
$$\rightarrow$$
 Mg²⁺+ 2e


$$2Ag^+ + 2e \rightarrow 2Ag$$

Oxidation

(atom loses an electron)

Reduction

(átomo gains an electron)

Oxidation Reactions: half-reaction that involves a loss of electrons

Reduction Reactions: half-reaction that involves a gain of electrons

III. Precipitation Reactions

A precipitate is an insoluble solid that separates from the solutions

$$Pb(NO_3)_2 (aq) + 2KI (aq) \rightarrow Pbl_2 (s) + 2KNO_3 (aq)$$

$$Pb^{2+}(aq) + 2NO_3^{-}(aq) + 2K^{+}(aq) + 2I^{-}(aq) \rightarrow Pbl_2(s) + 2K^{+}(aq) + 2NO_3^{-}(aq)$$

$$Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$$

Question 1

Molarity is the number of of solute dissolved

Solution

- a) Grams
- b) Milliliter
- c) Second
- d) moles

Question 2

Molality is the number of moles of dissolved in 1kg solvent

- a) Solvent
- b) Solute
- c) Solution
- d) acid

Question 3

Molarity is the number of moles of solute dissolved

- 1 of the Solution
- a) Grams
- b) Liter
- c) Second
- d) moles

Question 4

A solution has a volume of 2.0 L and contains 36.0 g of glucose ($C_6H_{12}O_6$). If the molar mass of glucose is 180 g/mol, what is the molarity of the solution

- a) 1.0
- b) 1.00
- c) 0.1
- d) 0.01

Question 5

How many liters of 0.25 M NaCl solution must be measured to obtain 0.1 mol of NaCl

A) 1

B) 2

C) 2.5

D) 3.5

Question 6

What is the concentration of a solution in mol/L when 80 g of calcium carbonate, $Ca(CO_{3)2}$, is dissolved in 2 L of solution? (Molecular weight of Ca(CO3)2 = 100g/mol

0.4

0.004

Question 7

A student needs to prepare 250 ml of 0.1 M of Cd(NO₃)₂ solution. How many grams of cadmium nitrate are required? (Molecular weight of $Cd(NO_3)_2 = 236 \text{ g/mol}$

5.9

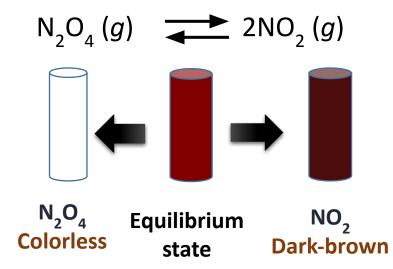
B) 5.1

5.4

D) 5.6

COURSE NAME: CHEMISTRY 101

COURSE CODE: 402101-4


Equilibrium

Equilibrium is a state in which there are no observable changes as time goes by

Chemical equilibrium is achieved when:

- the rates of the forward and reverse reactions are equal and
- the concentrations of the reactants and products remain constant

Chemical equilibrium

Physical equilibrium

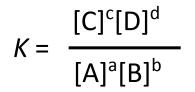
$$H_2O(I)$$
 \longrightarrow $H_2O(g)$

Physical equilibrium is between two states of the same substance

Equilibrium Constant K

$$N_2O_4(g)$$
 \longrightarrow $2NO_2(g)$

$$K_c = \frac{[NO_2]^2}{[N_2O_4]}$$


$$K_{p} = \frac{P_{NO_{2}}^{2}}{P_{N_{2}O_{4}}}$$

$$K = \frac{[NO_2]^2}{[N_2O_4]} = 4.63 \times 10^{-3}$$

$$aA + bB$$

$$cC + dD$$

Law of Mass Action

Equilibrium Position

K>>1

Products are favored at equilibrium

(the equilibrium lie to the right)

K<<1

Reactants are favored at equilibrium

(the equilibrium lie to the left)

Products

Relation between K and K

$$N_2O_4(g)$$
 \longrightarrow $2NO_2(g)$

$$K_c = \frac{[NO_2]^2}{[N_2O_4]}$$

$$K_{p} = \frac{P^{2}}{\frac{NO_{2}}{P}}$$

$$N_{2}O_{4}$$

In most cases

$$K_c \neq K_p$$

$$aA(g) + bB(g) \longrightarrow cC(g) + dD(g)$$

$$cC(g) + dD(g)$$

$$K_p = K_c (RT)^{\Delta n}$$

 Δn = moles of gaseous products – moles of gaseous reactants

$$= (c+d) - (a+b)$$

Homogeneous Equilibrium

Homogenous equilibrium applies to reactions in which all reacting species are in the same phase.

$$CH_3COOH(aq) + H_2O(I)$$
 \longrightarrow $CH_3COO^-(aq) + H_3O^+(aq)$

$$K'_{c} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH][H_{2}O]}$$
 [H₂O] = constant

$$K_c = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]} = K_c'[H_2O]$$

General practice **not** to include units for the equilibrium constant.

The equilibrium concentrations for the reaction between carbon monoxide and molecular chlorine to form $COCl_2(g)$ at $74^{\circ}C$ are [CO] = 0.012 M, $[Cl_2] = 0.054 M$, and $[COCl_2] = 0.14 M$. Calculate the equilibrium constants K_c and K_n .

$$CO(g) + Cl_2(g)$$

$$COCl_2(g)$$

$$K_c = \frac{[COCl_2]}{[CO][Cl_2]} = \frac{0.14}{0.012 \times 0.054} = 220$$

$$K_p = K_c (RT)^{\Delta n}$$

$$\Delta n = 1 - 2 = -1$$

$$R = 0.0821$$

$$\Delta n = 1 - 2 = -1$$
 $R = 0.0821$ $T = 273 + 74 = 347 \text{ K}$

$$K_p = 220 \times (0.0821 \times 347)^{-1} = 7.7$$

The equilibrium constant K_p for the reaction:

$$2NO_2(g)$$
 \longrightarrow $2NO(g) + O_2(g)$

is 158 at 1000K. What is the equilibrium pressure of O_2 if the P_{NO2} = 0.400 atm and P_{NO} = 0.270 atm?

$$K_p = \frac{P_{\text{NO}}^2 P_{\text{O}_2}}{P_{\text{NO}_2}^2}$$

$$P_{O_2} = K_p \frac{P_{NO_2}^2}{P_{NO}^2}$$

$$P_{O_2}$$
 = 158 x (0.400)²/(0.270)² = 347 atm

Heterogeneous Equilibrium

Heterogenous equilibrium applies to reactions in which reactants and products are in different phases

$$CaCO_3(s)$$
 $CaO(s) + CO_2(g)$

$$K_c' = \frac{[CaO][CO_2]}{[CaCO_3]}$$

$$[CaCO_3]$$
 = constant $[CaO]$ = constant

$$K_c = [CO_2] = K_c' \times \frac{[CaCO_3]}{[CaO]}$$

$$K_p = P_{\text{CO}_2}$$

The concentration of **solids** and **pure liquids** are not included in the expression for the equilibrium constant.

Consider the following equilibrium at 295 K:

$$NH_4HS(s)$$
 \longrightarrow $NH_3(g) + H_2S(g)$

The partial pressure of each gas is 0.265 atm. Calculate K_p and K_c for the reaction?

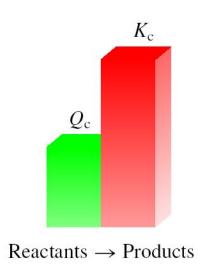
$$K_p = P_{NH_3}P_{H_2S} = 0.265 \times 0.265 = 0.0702$$

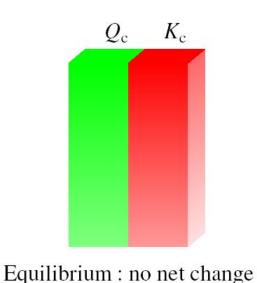
$$K_p = K_c(RT)^{\Delta n}$$

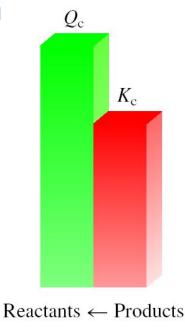
$$K_c = K_p(RT)^{-\Delta n}$$

$$\Delta n = 2 - 0 = 2$$
 $T = 295 \text{ K}$

$$K_c = 0.0702 \times (0.0821 \times 295)^{-2} = 1.20 \times 10^{-4}$$




Reaction Quotient Q_c


The *reaction quotient* (Q_c) is calculated by substituting the initial concentrations of the reactants and products into the equilibrium constant (K_c) expression.

- $Q_c > K_c$ system proceeds to left to reach equilibrium
- $Q_c = K_c$ the system is at equilibrium

• $Q_c < K_c$ system proceeds to right to reach equilibrium

• Find the value of Q and determine which side of the reaction is favored. Given $K_{eq} = 0.5$ HCl (g) + NaOH (aq) \rightleftharpoons NaCl (aq)+ H2O (l) [HCl]= 3.2 M [NaOH]= 4.3 M[NaCl]=6 M

$$(8.0 \times 10^4)$$
 . $(5.00 \times 10^2) = 40 \times 10^6$ or 4.0×10^7 (2 SF) (2 SF)

 $Qc = 0.436 \dots Q$ is less than K_{eq} so the reaction shifts RIGHT, favors the products.

Equilibrium Constant Calculations

• If a reaction can be expressed as the sum of two or more reactions, the equilibrium constant for the overall reaction is given by the product of the equilibrium constants of the individual reactions.

$$A + B \longrightarrow E + F$$

$$K'_{c}$$

$$K'_{c} = \frac{[C][D]}{[A][B]}$$

$$K'_{c} = K''_{c}$$

$$K'_{c} = \frac{[E][F]}{[A][B]}$$

$$K'_{c} = \frac{[E][F]}{[A][B]}$$

$$K_c = K'_c \times K''_c$$

Equilibrium Constant Calculations

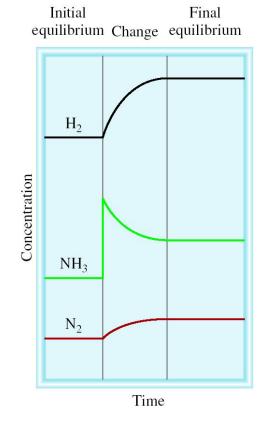
 When the equation for a reversible reaction is written in the opposite direction, the equilibrium constant becomes the reciprocal of the original equilibrium constant.

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

$$2NO_2(g) \longrightarrow N_2O_4(g)$$

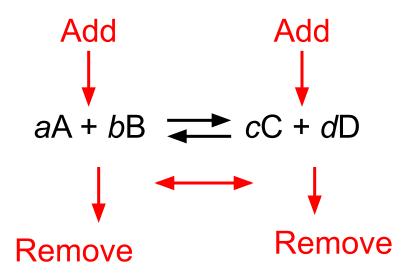
$$K = \frac{[NO_2]^2}{[N_2O_4]} = 4.63 \times 10^{-3}$$

$$K' = \frac{[N_2O_4]}{[NO_2]^2} = \frac{1}{K} = 216$$



Le Châtelier's Principle

If an external stress is applied to a system at equilibrium, the system adjusts in such a way that the stress is partially offset as the system reaches a new equilibrium position.


I. Changes in Concentration

$$N_2(g) + 3H_2(g)$$
 \longrightarrow $2NH_3(g)$ Equilibrium shifts left to offset stress \longrightarrow Add NH_3

Changes in Concentration continued

Change

Shifts the Equilibrium

Increase concentration of product(s)

Decrease concentration of product(s)

Increase concentration of reactant(s)

Decrease concentration of reactant(s)

left

right

right

left

125

Le Châtelier's Principle

II. Changes in Volume and Pressure

$$A(g) + B(g) \longrightarrow C(g)$$

Change

Increase pressure
Decrease pressure
Increase volume
Decrease volume

Shifts the Equilibrium

Side with fewest moles of gas
Side with most moles of gas
Side with most moles of gas
Side with fewest moles of gas

Le Châtelier's Principle

III. Temperature Changes

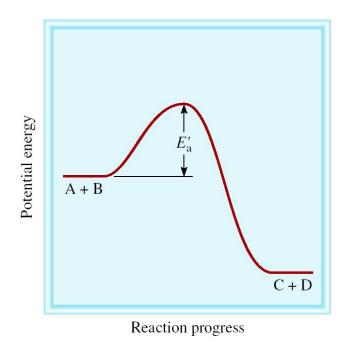
Consider heat as a product in exothermic reactions

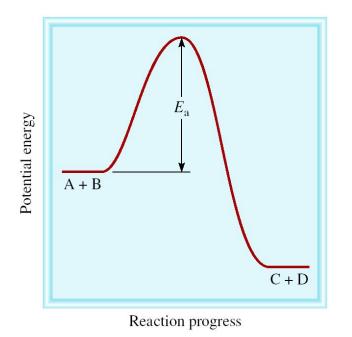
$$A + B = AB + Heat$$

- Add heat □ Shift to reactants
- Remove heat □ Shift to products

Consider heat as a reactant in endothermic reactions

$$A + B + heat = AB$$




Remove heat □ **Shift to reactants**

Le Châtelier's Principle

- Adding a Catalyst
 - does not change *K*
 - does not shift the position of an equilibrium system
 - system will reach equilibrium sooner

قسم الكيمياء Denartment of Chemistry

Catalyst lowers E_a for **both** forward and reverse reactions.

Le Châtelier's Principle - Summary

<u>Change</u>	Shift Equilibrium	Change Equilibrium Constant
Concentration	yes	no
Pressure	yes*	no
Volume	yes*	no
Temperature	yes	yes
Catalyst	no	no

*Dependent on relative moles of gaseous reactants and products

Question 1

Which equilibrium in gaseous phase would be unaffected by an increase in pressure:

(a)
$$N_2O_4 -> 2NO_2$$

(b)
$$N_2 + O_2 -> 2NO$$

(a)
$$N_2O_4 -> 2NO_2$$

(b) $N_2 + O_2 -> 2NO$
(c) $N2 + 3H_2 -> 2NH_3$

(d)
$$CO + \frac{1}{2}O_2^2 - > O_{2+}CO_2$$

Question 2

For the equilibrium, $2NO_{2}(g) -> N_{2}O_{4}(g) + 14.6 \text{ kcal}$ An increase of temperature will:

- (a) Favour the formation of N_2O_A
- (b) Favour the decomposition of N₂O₄
- (c) Not affect the equilibrium
- (d) Stop the reaction

Question 3

The equilibrium constant (K_c) for the reaction is $2SO_3(g) -> 2SO_2(g) + O_2(g)$ system as described by the above equation is:

(a)
$$[SO_2]^2/[SO_3]$$
 (b) $[SO_2]^2[O_2]/[SO_3]^2$ (c) $[SO_3]^2/[SO_3]^2[O_2]$ (d) $[SO_2][O_2]$

Question 4

At equilibrium, .

- (a) the rates of the forward and reverse reactions are equal
- (b) the rate constants of the forward and reverse reactions are equal
- (c) all chemical reactions have ceased
- (d) the value of the equilibrium constant is 1

Question 5

The value of Keq for the following reaction is 0.25:

$$SO_{2}(g) + NO_{2}(g) -> SO_{3}(g) + NO(g)$$

The value of Keq at the same temperature for the reaction below is

reaction below is _____.
$$2SO_2(g) + 2NO_2(g) -> 2SO_3(g) + 2NO(g)$$

- 0.062
- 16
- 0.25
- 0.50

Question 6

Consider the reaction: $2 SO_2(g) + O_2(g) \leftrightarrow 2 SO_3(g)$. If, at equilibrium at a certain temperature, [SO₂] = 1.50 M, $[O_2]$ = 0.120 M, and $[SO_3]$ = 1.25 M, what is the value of the equilibrium constant?

(b) 6.94

(c) 8.68

(d) 0.14

Question 7

What is the correct equilibrium constant expression for the following reaction? 2 Cu(s) + $O_2(g) \rightarrow 2$ CuO(s)

(a) Keq =
$$1/[O_2]^2$$

(b) Keq =
$$[CuO]^2/[Cu]^2[O_2]$$

(c) Keq =
$$[O_2]$$

(d) Keq =
$$1/[O_2]$$

Question 8

What is the relationship of the equilibrium constants for the following two reactions?

(1) 2
$$NO_2(g) \leftrightarrow N_2O_4(g)$$
;

(2)
$$N_2O_4(g) \leftrightarrow 2 NO_2(g)$$

(a)
$$K_1 = 1/K_2$$
 (b) $K_2 = 1/K_1$

(c)
$$K_1 = K_2$$

(c) $K_1 = K_2$ (d) both a and b are correct

Question 9

Consider the following endothermic reaction: $H_2(g) + I_2(g) \leftrightarrow 2 HI(g)$. If the temperature is increased,

(a) more HI will be produced

- (b) some HI will decompose, forming H₂ and I₂
- (c) the magnitude of the equilibrium constant will decrease
- (d) the pressure in the container will increase

Question 10

Consider the following reaction at equilibrium: $NO_2(g) + CO(g) \leftrightarrow NO(g) + CO_2(g)$. Suppose the volume of the system is decreased at constant temperature, what change will this cause in the system?

- (a) A shift to produce more NO
- (b) A shift to produce more CO
- (c) A shift to produce more NO₂
- (d) No shift will occur

Question 11

Which of these four factors can change the value of the equilibrium constant?

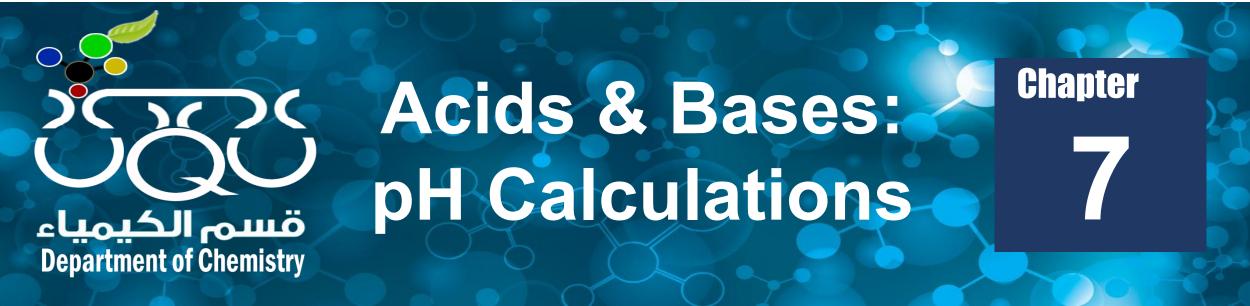
- (a) catalyst
- (b) pressure
- (c) concentration
- (d) temperature

Question 12

Which general rule helps predict the shift in direction of an equilibrium reaction?

- (a) Le Chatelier's principle
- (b) Haber process

(c) Equilibrium constant


(d) Bosch theory

COURSE NAME: CHEMISTRY 101

COURSE CODE: 402101-4

Acids & Bases

Definition of acids and bases

Arrhenius concept

Brønsted-Lowry concept

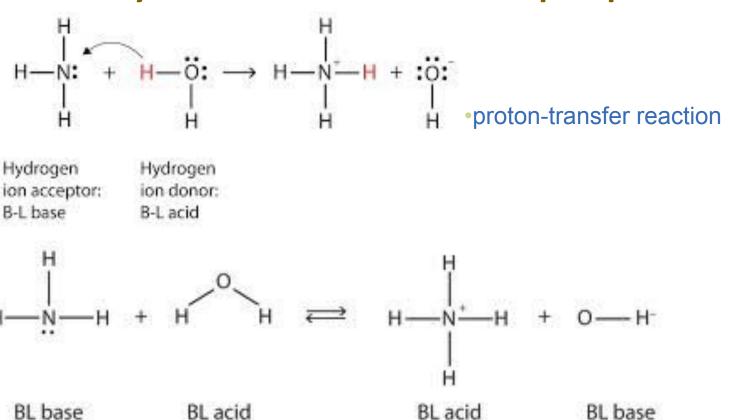
Lewis concept

1- Arrhenius Concept

An acid is a compound that releases H⁺ ions in water.

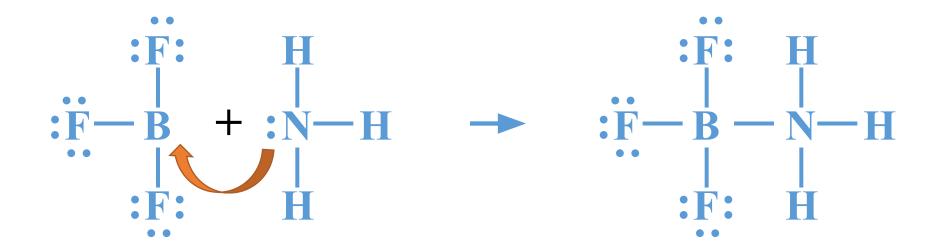
A base is a compound that releases OH⁻ in water.

$$HCI (aq) \longrightarrow H^+ (aq) + CI^- (aq)$$


NaOH (aq)
$$\longrightarrow$$
 Na⁺ (aq) $+$ OH⁻ (aq)

Limitations: Some bases do not contain OH⁻

2- Brønsted-Lowry Concept


An acid is any molecule or ion that can donate a proton H⁺. A base is any molecule or ion can accept a proton.

3- Lewis Concept

An <u>acid</u> as an electron pair acceptor and a <u>base</u> as an .electron pair donor

Another examples: hydration of AlCl₃, BCl₃, OH⁻

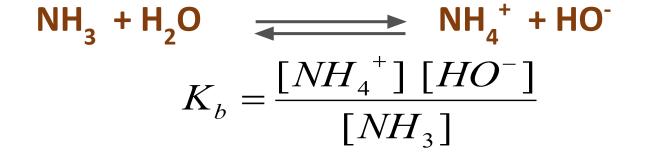
Strength of Acids and Bases

A strong acid or base ionizes completely in water

Strong Acids	Strong bases
HCI	LiOH
HBr	NaOH
HI	КОН
HNO ₃	Ca(OH) ₂
H ₂ SO ₄	Sr(OH) ₂
HCIO ₄	Ba(OH) ₂

Weak Acids and Bases

A weak acid or base ionizes only to a limited extent in water


Examples: CH₃COOH, NH₃

Acid or Base Ionization Constant

It is a measure of the strength of acid or base.

The ionization constant has the same equilibrium expression.

Self-ionization of water

Water acts either as an acid or a base

$$H_2O(l) + H_2O(l) \rightarrow H_3O^+(aq) + OH^-(aq)$$

$$K_{w} = [H_{3}O^{+}][OH^{-}]$$

Or

$$K_{w} = [H^{+}][OH^{-}]$$

K_w = water dissociation constant

Self-ionization of water

$$K_w = [H^+][OH^-]$$

$$K_w = 1.0 \times 10^{-14} \text{ at } 25 \text{ }^{\circ}C$$

$$[H^+] = [OH^-] = \sqrt{1.0 \times 10^{-14}} = 1.0 \times 10^{-7}$$

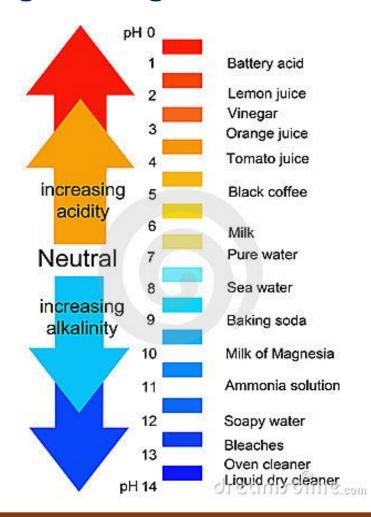
At 25°C, you observe the following conditions.

an acidic solution, [H⁺] > [OH⁻] a neutral solution, [H⁺] = [OH⁻] a basic solution, [H⁺] < [OH⁻]

pH of Solutions

The pH of a solution is defined as the negative logarithm of the

molar hydrogen-ion concentration


$$pH = -\log[H^+]$$

$$[H^+]=10^{-pH}$$

$$pH + pOH = 14.00$$

In a **neutral solution**, whose hydrogen-ion concentration is 1.0×10^{-7} , the **pH = 7.00**

pH of Solutions

At 25°C, you observe the following conditions

In an acidic solution, $[H^+] > 1.0 \times 10^{-7} M$, pH<7

In a neutral solution, $[H^+] = 1.0 \times 10^{-7} M$, pH=7

In a basic solution, $[H^+] < 1.0 \times 10^{-7} \text{ M}, \text{ pH} > 7$

Example

For a solution in which the hydrogen-ion concentration is 1.0 x 10-3, the pH is:

$$pH = -\log(1.0 \times 10^{-3}) = 3.00$$

Note that the number of <u>decimal places</u> in the pH equals the number of significant figures in the hydrogen-ion concentration

Examples

The hydrogen ion concentration of a fruit juice is 3.3×10^{-2} M. What is the pH of the juice? Is it ?acidic or basic

$$pH = -\log(3.3 \times 10^{-2}) = -(-1.48) = 1.48$$

If a solution has pH of 5.50, calculate its [OH⁻]

$$14 = pH + pOH$$

$$pOH = 14.00 - 5.50 = 8.50$$

$$pOH = -\log[OH^{-}]$$

$$\log[OH^{-}] = -8.50$$

$$[OH^{-}]=10^{-8.50}=3.2\times10^{-9}M$$

pH of Strong Acids and Bases

Dissociation of a strong base:

complete dissociation of a base and no base in the form of NaOH will be left in solution

$$pOH = -log[OH^{-}]$$

$$pH = 14 - pOH = 14 + log [OH^{-}]$$

Example

An ammonia solution has a hydroxide-ion concentration of $1.9 \times 10-3$ M. What is the pH of the solution?

You first calculate the pOH:

$$pOH = -log(1.9 \times 10^{-3}) = 2.72$$

Then the pH is:

$$pH = 14.00 - 2.72 = 11.28$$

pH of Weak Acids and Bases

Dissociation of weak acids (\approx Ka < 10⁻⁴)

Examples: K_a (HF)=7.1 x 10⁻⁴, K_a (HCOOH)=1.7 x 10⁻⁴

$$K_{a} = \frac{\begin{bmatrix} A^{-} \end{bmatrix} \begin{bmatrix} H^{+} \end{bmatrix}}{\begin{bmatrix} HA \end{bmatrix}} = \frac{X^{2}}{C-X} = \frac{X^{2}}{C}$$

c-x = concentration of an acid at equilibriumx = concentration of products at equilibriumc = concentration of an acid at the beginning

$$[H^+] = x = (K_a c)^{1/2}$$

$$pH = -log [H^+] = -log (K_a c)^{1/2}$$

$$pK_a = -logK_a$$

Question 1

The solution with the lowest pH is

- A. 1.0M HF
- B. 1.0M HCN
- C. 1.0M HCOOH D. 1.0M CH₃COOH

Question 2

As the [H₃O⁺] in a solution decreases, the [OH⁻]

- A. increases and the pH increases
- B. increases and the pH decreases
- C. decreases and the pH increases
- D. decreases and the pH decreases

Question 3

The value of pK_w at 25°C is

- A. 1.0×10^{-14}
- B. 1.0 x 10⁻⁷
- C. 7.00
- D. 14.00

Question 4

What is the pOH of 0.1 M NaOH?

- A. 1 B. 0.0032
- C. 0.40 D. 13.60

Question 5

Which of the following describes the relationship between [H₂O⁺] and [OH⁻]?

A.
$$[H_3O^+][OH^-] = 14.00$$

B.
$$[H_3O^+] + [OH^-] = 14.00$$

C.
$$[H_3O^+][OH^-] = 1.0 \times 10^{-14}$$

D.
$$[H_3^{-}O^+] + [OH^-] = 1.0 \times 10^{-14}$$

Question 6

The pH of a solution for which $[OH^{-}] = 1.0 \times 10^{-6}$ is

- A. 1.00
 - B. 8.00
 - C. 6.00 D. -6.00

Question 7

The ionization of water at room temperature is represented by

A.
$$H_2O = 2H^+ + O^{2-}$$

B.
$$2H_2O = 2H_2 + O_2$$

C.
$$2H_2O = H_2 + 2OH^2$$

D.
$$2H_2O = H_3O^+ + OH^-$$

Question 8

According to the Bronsted-Lowry theory, a base is a(n)

- A. proton donorvv
- B. proton acceptor
- C. electron donor
- D. electron acceptor

Question 9

the pH of 1.0 M acetic acid (Ka is 1.86 $\times 10^{-5}$ at 20 °C).

- E. 1.37
- F. 2.37
- G. 3.73
- H. 4.73

Question 10

Addition of HCl to water causes

- A. both [H₃O⁺] and [OH⁻] to increase
- B. both [H₃O⁺] and [OH⁻] to decrease
- C. [H₃O⁺] to increase and [OH⁻] to decrease
- D. [H₃O⁺] to decrease and [OH⁻] to increase

Question 11

Which of the following statements concerning Arrhenius acids and Arrhenius bases is correct?

- A. In the pure state, Arrhenius acids are covalent compounds.
- B. In the pure state, Arrhenius bases are ionic compounds
- C. Dissociation is the process by which Arrhenius acids produce H⁺ ions in solution
- D. Arrhenius bases are also called hydroxide bases

COURSE NAME: CHEMISTRY 101

COURSE CODE: 402101-4

Energy

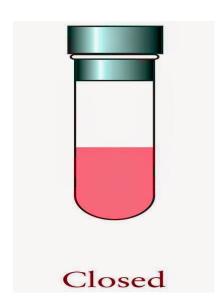
Energy is the capacity to do work.

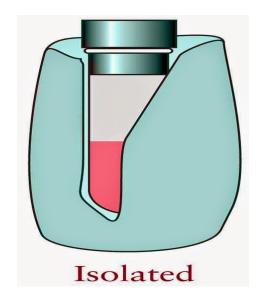
- Thermal energy is the energy associated with the random motion of atoms and molecules
- Chemical energy is the energy stored within the bonds of chemical substances
- Nuclear energy is the energy stored within the collection of neutrons and protons in the atom
- Potential energy is the energy available by virtue of an object's position

Kinds of Systems

Open system


can exchange mass and energy


Closed system


allows the transfer of energy (heat) but not mass

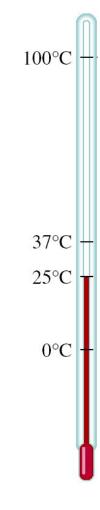
Isolated system

doesn't allow transfer of either mass or energy

Examples

Thermodynamics

Thermodynamics is the scientific study of the interconversion of heat and other kinds of energy



Heat (q)

Heat is the transfer of thermal energy between two bodies that are at different temperatures.

Temperature is a measure of the thermal energy

Temperature **X** Thermal Energy

First Law of Thermodynamics

First Law: Energy of the Universe is Constant

$$E = q + w$$

q = heat. Transferred between two bodies

w = work. Force acting over a distance (F x d)

$$w = F x d$$

Thermodynamic State Functions

• Thermodynamic State Functions: Thermodynamic properties that are dependent on the state of the system only regardless of the pathway. Examples: (Energy, pressure, volume, temperature)

$$\Delta E = E_{final} - E_{initial}$$

$$\Delta P = P_{final} - P_{initial}$$

$$\Delta V = V_{final} - V_{initial}$$

$$\Delta T = T_{final} - T_{initial}$$

• Other variables will be dependent on pathway (Examples: q and w). These are Path Functions. The pathway from one state to the other must be defined.

Thermochemistry

Thermochemistry is the study of heat change in chemical reactions.

Exothermic process is any process that gives off heat – transfers thermal energy from the system to the surroundings.

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(l) + energy$$

 $H_2O(g) \longrightarrow H_2O(l) + energy$

Endothermic process is any process in which heat has to be supplied to the system from the surroundings.

energy + 2HgO (s)
$$\longrightarrow$$
 2Hg (/) + O₂ (g)
energy + H₂O (s) \longrightarrow H₂O (/)

Enthalpy of Chemical Reactions

Definition of Enthalpy

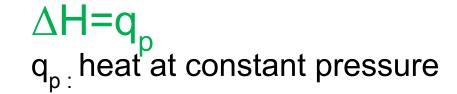
Thermodynamic Definition of Enthalpy (H):

$$H = E + PV$$

E = energy of the system

P = pressure of the system

V = volume of the system

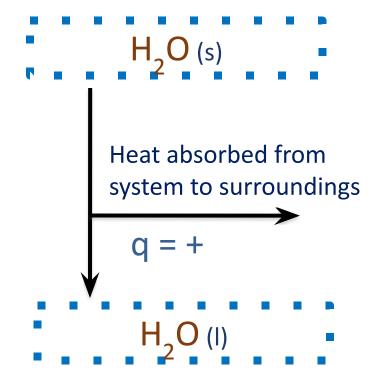

Changes in Enthalpy (ΔH)

• Consider the following expression for a chemical process:

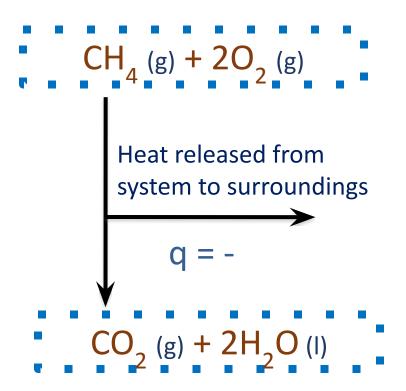
$$\Delta H = H_{products} - H_{reactants}$$

If $\Delta H > 0$, then $q_p > 0$. (+) The reaction is endothermic

If ΔH <0, then q_p <0. (-) The reaction is exothermic



کرکرک کیکیک قسم الکیمیاء مفاورد الکیمیاء


Calorimetry: the measurement of heat change

Kinds of Processes (chemical reactions or physical changes)

Endothermic processes

Exothermic processes

Standard Enthalpy (Heat) of reaction (ΔH^{o}_{rxn})

Enthalpy change at standard conditions (25 °C, 1 atm)

$$N_{2}^{(g)} + 3H_{2}^{(g)}$$
 \longrightarrow $2NH_{3}^{(g)} \Delta H^{o} = -92.38 \text{ kJ}$

Thermochemical reaction

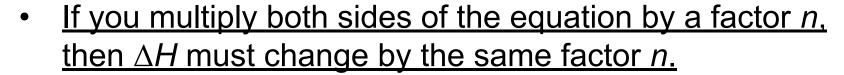
Standard Heat of formation (ΔH_f^o)

The heat change that results when 1 mol of the compound is formed from standard state of its elements

The standard enthalpy of formation of any element in its most stable form is zero.

 ΔH^0 (C, diamond) = 1.90 kJ/mol

What is ΔH_f^o of $O_2(g)$, Hg(I), C(graphite)?


Thermochemical Equations

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(I) \Delta H = -890.4 \text{ kJ/mol}$$

- It shows the physical states of all products and reactants
- Balanced
- It shows Heat of reaction kJ

$$H_2O(s) \longrightarrow H_2O(l)$$
 $\Delta H = 6.01 \text{ kJ/mol}$

• If you reverse a reaction, the sign of ΔH changes $H_2O(I) \longrightarrow H_2O(S) \quad \Delta H = -6.01 \text{ kJ/mol}$

$$2H_2O(s) \longrightarrow 2H_2O(l)$$
 $\Delta H = 2 \times 6.01 = 12.0 \text{ kJ}$

Question 1

An exothermic reaction causes the surroundings to:

- become basic B. decrease in temperature
- C. condense D. increase in temperature

Question 2

Standard enthalpy of reactions can be calculated from standard enthalpies of formation of reactants.

- A. True
- B. False

Question 3

Given: $SO2(g) + \frac{1}{2}O2(g) ----> SO3(g) \Delta H^{\circ}_{ryn} = -99$ kJ, what is the enthalpy change for the following reaction? 2 SO3(g) ----> O2(g) + 2 SO2(g)

- C. 99 kJ B. -99 kJ
- C. 49.5 kJ D. 198 kJ

Question 4

Energy is the ability to do work and can be:

- A. converted to one form to another
- B. can be created and destroyed
- C. used within a system without consequences
- D. none of the above

Question 5

To which one of the following reactions, occurring at 25°C, does the symbol ΔH° , $[H_2SO_4(I)]$ refer?

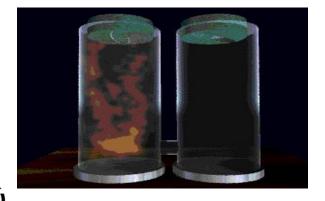
- E. H2(g) + S(s) + 2 O2(g) ----> H2SO4(I)
- F. H2SO4(I) ----> H2(g) + S(s) + 2 O2(g)
- G. H2(g) + S(g) + 2 O2(g) ----> H2SO4(I)
- H. H2SO4(I) ----> 2 H(g) + S(s) + 4 O(g)
- I. 2 H(g) + S(g) + 4 O(g) ----> H2SO4(I)

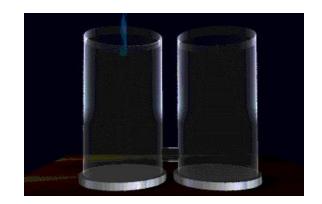
كليت العلوم التطبيقيت Faculty of Applied Sciences

Elements that exist as gases at 25°C and 1 atmosphere

																8A
2A											3A	4A	5A	6A	7A	Не
Be											В	C	N	О	F	Ne
Mg	3B	4B	5B	6B	7B		—8B —		1B	2B	Al	Si	P	S	Cl	Ar
Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
	Be Mg Ca Sr Ba	Be Mg 3B Ca Sc Sr Y Ba La	Mg3B4BCaScTiSrYZrBaLaHf	Mg 3B 4B 5B Ca Sc Ti V Sr Y Zr Nb Ba La Hf Ta	Mg 3B 4B 5B 6B Ca Sc Ti V Cr Sr Y Zr Nb Mo Ba La Hf Ta W	Mg 3B 4B 5B 6B 7B Ca Sc Ti V Cr Mn Sr Y Zr Nb Mo Tc Ba La Hf Ta W Re	Mg 3B 4B 5B 6B 7B Ca Sc Ti V Cr Mn Fe Sr Y Zr Nb Mo Tc Ru Ba La Hf Ta W Re Os	Mg 3B 4B 5B 6B 7B 8B Ca Sc Ti V Cr Mn Fe Co Sr Y Zr Nb Mo Tc Ru Rh Ba La Hf Ta W Re Os Ir	Mg 3B 4B 5B 6B 7B 8B Ca Sc Ti V Cr Mn Fe Co Ni Sr Y Zr Nb Mo Tc Ru Rh Pd Ba La Hf Ta W Re Os Ir Pt	Mg 3B 4B 5B 6B 7B 8B 1B Ca Sc Ti V Cr Mn Fe Co Ni Cu Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Ba La Hf Ta W Re Os Ir Pt Au	Mg 3B 4B 5B 6B 7B 8B 1B 2B Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd Ba La Hf Ta W Re Os Ir Pt Au Hg	Mg 3B 4B 5B 6B 7B 8B 1B 2B Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Ba La Hf Ta W Re Os Ir Pt Au Hg Tl	Be Mg 3B 4B 5B 6B 7B 8B 1B 2B Al Si Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb	Be B C N Mg 3B 4B 5B 6B 7B 8B 1B 2B Al Si P Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi	Be B C N O Mg 3B 4B 5B 6B 7B 8B 1B 2B Al Si P S Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po	Be B C N O F Mg 3B 4B 5B 6B 7B 8B 1B 2B Al Si P S Cl Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At

TABLE 5.1 Some Substances Found as Gases at 1 atm and 25°C


Elements	Compounds
H ₂ (molecular hydrogen)	HF (hydrogen fluoride)
N ₂ (molecular nitrogen)	HCl (hydrogen chloride)
O ₂ (molecular oxygen)	HBr (hydrogen bromide)
O_3 (ozone)	HI (hydrogen iodide)
F ₂ (molecular fluorine)	CO (carbon monoxide)
Cl ₂ (molecular chlorine)	CO ₂ (carbon dioxide)
He (helium)	NH ₃ (ammonia)
Ne (neon)	NO (nitric oxide)
Ar (argon)	NO ₂ (nitrogen dioxide)
Kr (krypton)	N ₂ O (nitrous oxide)
Xe (xenon)	SO ₂ (sulfur dioxide)
Rn (radon)	H ₂ S (hydrogen sulfide)
	HCN (hydrogen cyanide)*

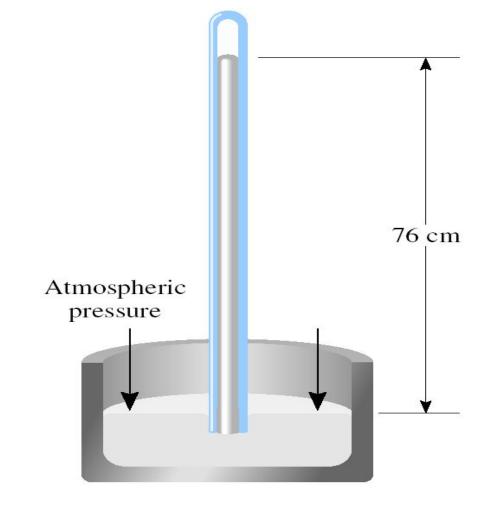


*The boiling point of HCN is 26°C, but it is close enough to qualify as a gas at ordinary atmospheric conditions.

Physical Characteristics of Gases

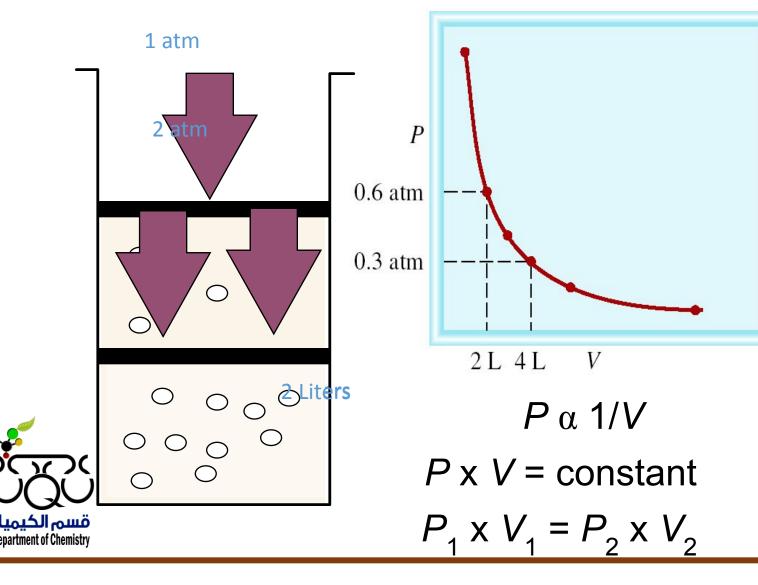
- Gases assume the volume and shape of their containers.
- Gases are the most compressible state of matter.
- Gases will mix evenly and completely when confined to the same container.
- Gases have much lower densities than liquids and solids.

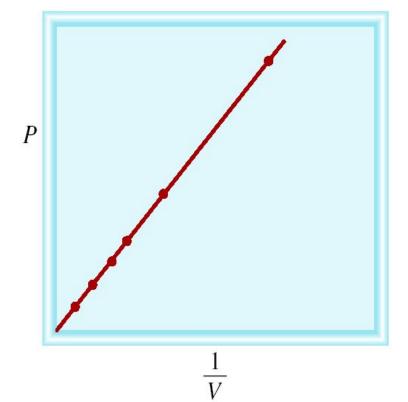
Pressure =


(force = mass x acceleration)

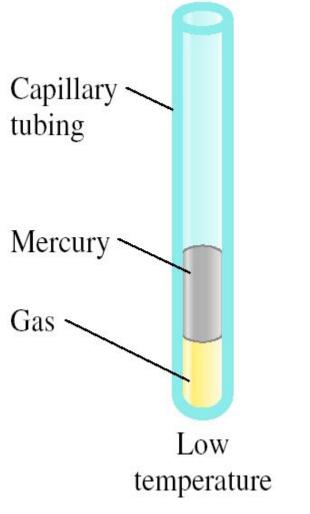
Units of Pressure

1 pascal (Pa) =
$$1 \text{ N/m}^2$$

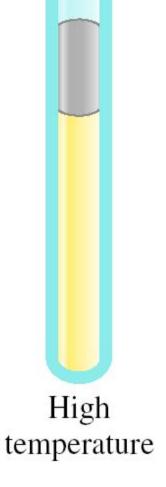

$$1 \text{ atm} = 760 \text{ mmHg} = 760 \text{ torr}$$


$$1 \text{ atm} = 101,325 \text{ Pa}$$

• Boyle's law: The volume of a given amount of gas held at constant temperature varies inversely with the applied pressure.


A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg. What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154 mL?

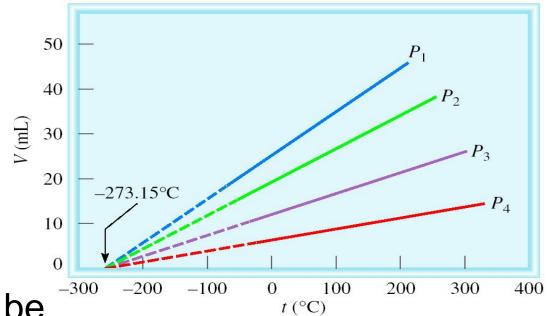
$$P \times V = constant$$
 $P_1 \times V_1 = P_2 \times V_2$
 $P_1 = 726 \text{ mmHg}$
 $P_2 = ?$
 $V_1 = 946 \text{ mL}$
 $V_2 = 154 \text{ mL}$



$$P_2 = \frac{P_1 \times V_1}{V_2} = \frac{726 \text{ mmHg x 946 mL}}{154 \text{ mL}} = 4460 \text{ mmHg}$$

Variation in Gas Volume with Temperature at Constant Pressure

V increases



Charles's Law: The volume of a given amount of gas held at constant pressure is directly proportional to the Kelvin temperature

$$V \alpha T$$

$$V = \text{constant } x T$$

$$V_1/T_1 = V_2/T_2$$

Temperature **must** be in Kelvin

$$T(K) = t(^{0}C) + 273.15$$

A sample of carbon monoxide gas occupies 3.20 L at 125 °C. At what temperature will the gas occupy a volume of 1.54 L if the pressure remains constant?

$$V_1/T_1 = V_2/T_2$$
 $V_1 = 3.20 \text{ L}$
 $V_2 = 1.54 \text{ L}$
 $T_1 = 398.15 \text{ K}$
 $T_2 = ?$
 $T_1 = 125 (^{0}\text{C}) + 273.15 (\text{K}) = 398.15 \text{ K}$

$$\frac{V_2 \times T_1}{V_1} = \frac{1.54 \text{ L} \times 398.15 \text{ K}}{3.20 \text{ L}} = 192 \text{ K}$$

• Gay-Lussac's Law: The pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature.

$$\frac{P}{T}$$
 = a constant or $\frac{P_1}{T_1} = \frac{P_2}{T_2}$

Argon is an inert gas used in lightbulbs to retard the vaporization of the filament. A certain lightbulb containing argon at 1.20 atm and 18 °C is heated to 85 °C at constant volume. What is the final pressure of argon in the lightbulb (in atm)?

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

$$P_1 = 1.20 \text{ atm}$$
 $P_2 = ?$
 $T_1 = 291 \text{ K}$ $T_2 = 358 \text{ K}$

$$P_2 = ?$$

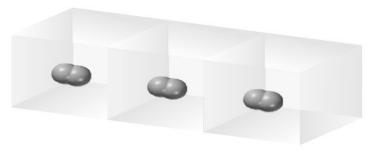
 $T_2 = 358 \text{ K}$

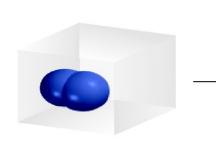
$$P_2 = P_1 x$$
 $\frac{T_2}{T_1} = 1.20 \text{ atm x}$ $\frac{358 \text{ K}}{291 \text{ K}} = 1.48 \text{ atm}$

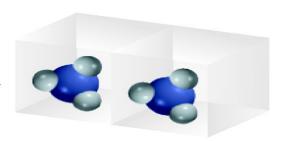
$$\frac{358 \text{ K}}{291 \text{ K}} = 1.48 \text{ atm}$$

Summary

LAW	RELAT-IONS HIP	LAW	CON-STANT
Boyle's	P↑ V↓	$P_1V_1 = P_2V_2$	T, n
Charles'	V↑ T↑	$V_1/T_1 = V_2/T_2$	P, n
Gay-Lussa c's	P ↑ T ↑	$P_1/T_1 = P_2/T_2$	V, n


Avogadro's Law


 $V \alpha$ number of moles (n)


 $V = constant \times n$

$$V_1 / n_1 = V_2 / n_2$$

Constant temperature Constant pressure

 $3H_2(g)$

3 molecules

3 moles

3 volumes

+ $N_2(g)$

1 molecule

1 mole

1 volume

 $2NH_3(g)$

2 molecules

2 moles

2 volumes

Ammonia burns in oxygen to form nitric oxide (NO) and water vapor. How many volumes of NO are obtained from one volume of ammonia at the same temperature and pressure?

$$4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O$$

1 mole $NH_3 \rightarrow 1$ mole NO

At constant T and P

Ideal Gas Equation

Boyle's law: $P \alpha \overrightarrow{V}$ (at constant *n* and *T*)

Charles' law: $V \alpha T$ (at constant n and P)

Avogadro's law: $V \alpha n$ (at constant P and T)

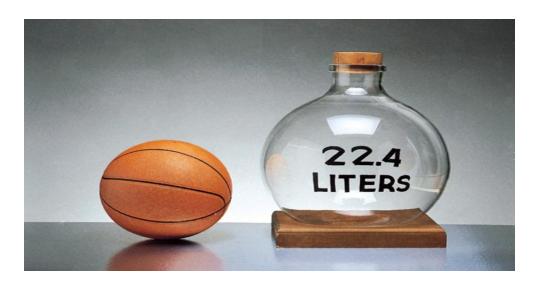
$$V \alpha \frac{nT}{P}$$

$$V = \text{constant x } \frac{nT}{P} = \frac{R nT}{P}$$

R is the gas constant

$$PV = nRT$$

The conditions 0 °C and 1 atm are called **standard temperature and pressure** (STP).


Experiments show that at STP, 1 mole of an ideal gas occupies 22.414 L.

$$PV = nRT$$

$$R = \frac{PV}{nT} = \frac{(1 \text{ atm})(22.414\text{L})}{(1 \text{ mol})(273.15 \text{ K})}$$

What is the volume (in liters) occupied by 49.8 g of HCl at STP?

$$T = 0$$
 °C = 273.15 K

$$P = 1 atm$$

$$PV = nRT$$

$$V = \frac{nRT}{P}$$

$$n = 49.8 \text{ g x}$$

$$\frac{1 \text{ mol HCI}}{36.45 \text{ g HCI}} = 1.37 \text{ mol}$$

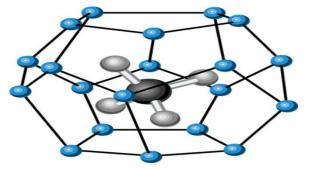
$$V = \frac{1.37 \text{ mot x } 0.0821 \frac{\text{L•atm}}{\text{mot k}} \text{ x } 273.15 \text{ K}}{1 \text{ atm}}$$

$$V = 30.7 L$$

Questions

- 1. Which of the following is not a characteristic of substances in the gas phase?
 - **A)**Substances in the gas phase have much lower densities than the same substances would have in the liquid or solid phase.
 - **B)**A mixture of substances in the gas phase will form a homogeneous solution, whereas the same mixture might not form a homogeneous solution in the liquid phase.
 - C)Substances in the gas phase retain their shapes easily.
 - **D)**Substances in the gas phase are compressible.
 - 2. A sample of gas occupies 2.78×10^3 mL at 25° C and 760 mm Hg. What volume will the gas sample occupy at the same temperature and 475 mm Hg?
 - **A)** 0.130 L
 - **B)** 1.04 L
 - **C)** 1.74 L
 - **D)** 4.45 L
 - E) None of the above

- 3.A steel tank contains carbon dioxide at a pressure of 13.0 atm when the temperature is 34° C. What will be the internal gas pressure when the tank and its contents are heated to 100° C.
 - A) 38.2 atm
 - **B)** 9.40 atm
 - **C)** 10.7 atm
 - **D)** 15.8 atm
 - E) None of the above.
- 4. Which of the following correctly identifies Boyle's law?
 - **A)** PV=k₁
 - **B)** $V=k_2T$


Questions

- 5. A gas evolved during the fermentation of alcohol had a volume of 19.4 L at 17°C and 746 mm Hg. How many moles of gas were collected?
 - **A)** 1.25 mol
 - **B)** 0.800 mol
 - **C)** 10.5 mol
 - **D)** 13.6 mol
 - **E)** 608 mol
- 6. How many grams of carbon dioxide are contained in 550 mL of this gas at STP?
 - **A)** 0.0245 g
 - **B)** 0.0280 g
 - **C)** 1080 g
 - **D)** 0.560 g
 - **E)** 1.1 g

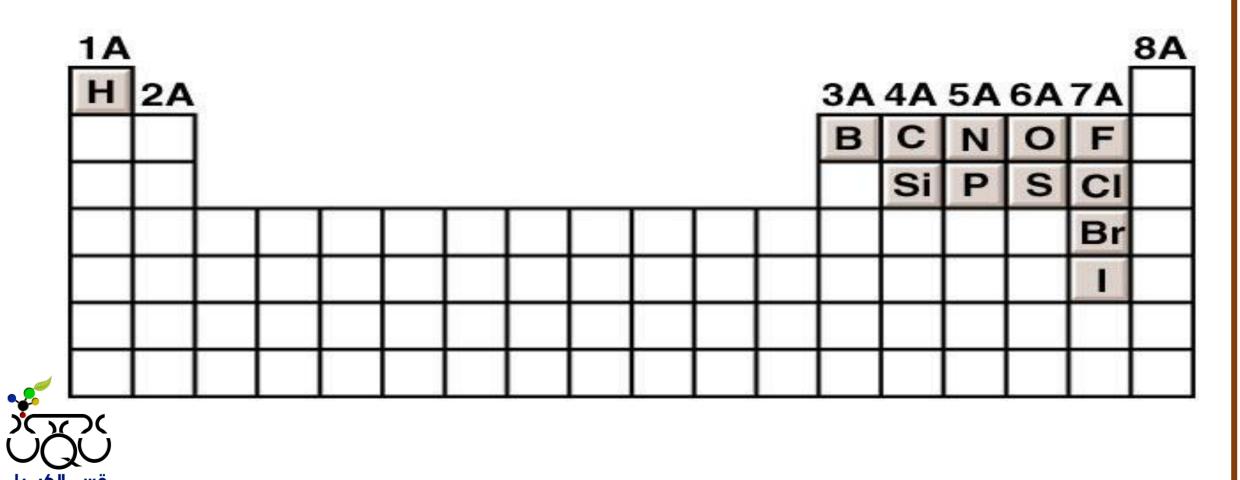


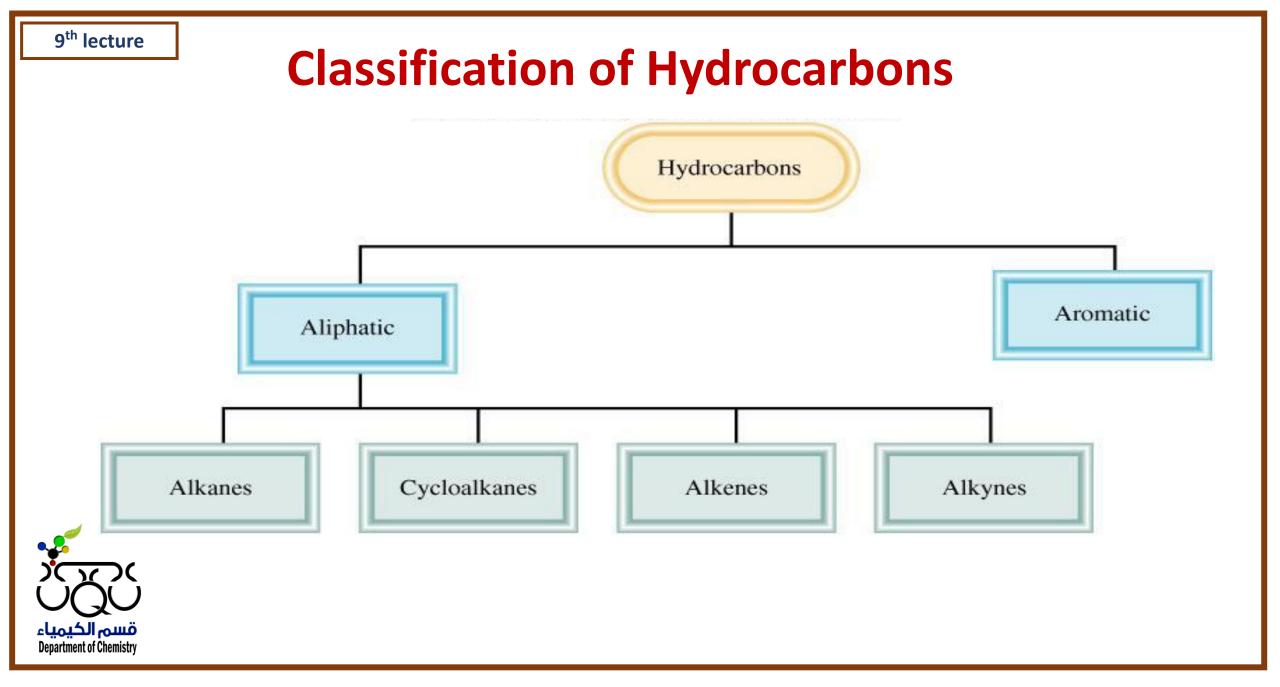
- 7. A 1.325 g sample of an unknown vapor occupies 368 mL at 114° C and 946 mm Hg. The empirical formula of the compound is NO_2 . What is the molecular formula of the compound?
 - **A)** NO₂
 - **B)** N₄O₈
 - **C)** $N_{3}O_{6}$
 - **D)** N₂O₄
 - **E)** N₅O₁₀.
- 8. A sample of ${\rm CO_2(g)}$ has a volume of 2L at pressure P and temperature T. If the pressure becomes triple the original value, at the same absolute temperature, the volume of ${\rm CO_2}$ will be
 - **A)** L
 - B) 2/3 L
 - **C)** 6L
 - **D)** 2L

ORGANIC CHEMISTRY

Chapter

COURSE NAME: CHEMISTRY 101


COURSE CODE: 402101-4


Organic Chemistry

- The study of the compounds of carbon
- Over 10 million compounds have been identified
 - about 1000 new ones are identified each day!
- C is a small atom
 - it forms single, double, and triple bonds
 - it is intermediate in electronegativity (2.5)
 - it forms strong bonds with C, H, O, N, and some metals

Common Elements in Organic Compounds

Alkanes

Alkanes have the general formula CnH2n+2 where n = 1,2,3,...

- 1. only single covalent bonds
- 2. **saturated hydrocarbons** because they contain the **maximum** number of hydrogen atoms that can bond with the number of carbon atoms in the molecule

	# of carbons	boiling point range	Use	Н	н н	ннн
	1-4	<20 °C	fuel (gasses such as methane, propane, butane)	- H—C—H	; ; H—C—C—H	; ; ; ; H−C−C−C−H
	5-6	30-60	solvents (petrol eum ether)	 H	 H H	
	6-7	60-90	solvents (ligroin)			
	6-12	85-200	fuel (gasoline)	Methane	Ethane	Propane
	12-15	200-300	fuel (kerosene)			
	15-18	300-400	fuel (heating oil)			
سم الكيمياء Department of Chemis	ا <mark>16-24</mark> try	>400	lubricating oil, asphalt			

Alkane Nomenclature

The First 10 Straight-Chain Alkanes

Name of Hydrocarbon	Molecular Formula	Number of Carbon Atoms	Melting Point (°C)	Boiling Point (°C)
Methane	CH ₄	1	-182.5	-161.6
Ethane	CH ₃ —CH ₃	2	-183.3	-88.6
Propane	CH ₃ -CH ₂ -CH ₃	3	-189.7	-42.1
Butane	CH3-(CH2)2-CH3	4	-138.3	-0.5
Pentane	CH3-(CH2)3-CH3	5	-129.8	36.1
Hexane	CH ₃ —(CH ₂) ₄ —CH ₃	6	-95.3	68.7
Heptane	CH ₃ —(CH ₂) ₅ —CH ₃	7	-90.6	98.4
Octane	CH ₃ —(CH ₂) ₆ —CH ₃	8	-56.8	125.7
Nonane	CH ₃ —(CH ₂) ₇ —CH ₃	9	-53.5	150.8
Decane	CH ₃ —(CH ₂) ₈ —CH ₃	10	-29.7	174.0

Each member C_3 - C_{10} differs by one CH_2 unit. This is called a homologous series.

Methane to butane are gases at normal pressures.

Pentane to decane are liquids at normal pressures.

Alkane Nomenclature

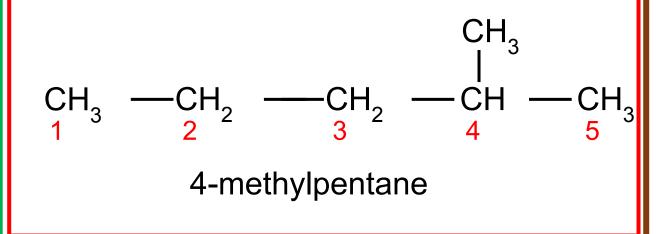
1. The parent name of the hydrocarbon is that given to the longest continuous chain of carbon atoms in the molecule.

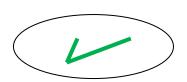
$$CH_3$$
 $-CH_2$ $-CH_2$ $-CH_2$ $-CH_3$ $-CH_4$ $-CH_5$ $-CH_5$ $-CH_5$ $-CH_5$ 4-methylheptane

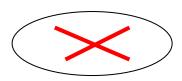
2. Alkyl substituents: An alkane less one hydrogen atom is an alkyl group.

drop the -ane and add -yl.

-CH₃: methyl


 $-C_2H_5$: ethyl


	Common Alkyl Groups
Name	Formula
Methyl	—СH ₃
Ethyl	$-CH_2-CH_3$
n-Propyl	$-CH_2-CH_2-CH_3$
n-Butyl	$-CH_2-CH_2-CH_2-CH_3$
Isopropyl	CH_3 $-C-H$ CH_3
t-Butyl*	CH_3 $-C-CH_3$ CH_3

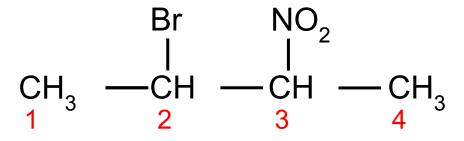

The letter t stands for tertiary.

Alkane Nomenclature

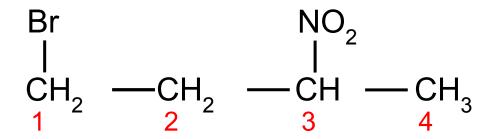
3. When one or more hydrogen atoms are replaced by other groups, the name of the compound must indicate the locations of carbon atoms where replacements are made. Number in the direction that gives the smaller numbers for the locations of the branches.

Alkane Nomenclature

4. Use prefixes di-, tri-, tetra-, when there is more than one alkyl branch of the same kind.


2,3-dimethylhexane

الكيمياء مسم الكيمياء Department of Chemistry


3,3-dimethylhexane

Alkane Nomenclature

5. Use previous rules for other types of substituents.

2-bromo-3-nitrobutane

1-bromo-3-nitrobutane

TABLE		
Names of Common Substituent Groups		
Functional Group	Name	
$-NH_2$	Amino	
—F	Fluoro	
—Cl	Chloro	
—Br	Bromo	
—I	Iodo	
$-NO_2$	Nitro	
$-CH=CH_2$	Vinyl	

Alkane Reactions

Combustion
$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(f)$$
 $\Delta H^0 = -890.4 \text{ kJ}$

Halogenation $CH_4(g) + CI_2(g) \xrightarrow{\text{light}} CH_3CI(g) + HCI(g)$
 $CI_2 + \text{energy} \longrightarrow CI \cdot + CI \cdot$
 $CI_2 + CI_2 +$

Questions

- 1- Organic compounds must contain
- A) Oxygen
- B) Nitrogen
- C) Hydrogen
- D) Carbon

- **2-** Which formula represents a saturated hydrocarbon? A) C2H2
- B) C3H8
- C) C3H6

- **4-** How many carbon atoms are present per molecule in the compound 3-methyl-4-ethyloctane? How many of those are present on the side chains (branches) only?
- A) 11 total; 3 on branches
- B) 15 total; 7 on branches
- C) 12 total; 3 on branches
- D) 15 total; 2 on branches

- **5-** How many hydrogen atoms would be part of one molecule of pentane?
- A) 5
- B) 8
- C) 10
- D) 12
- **7-** The general formula for the alkane series is :
- A) CnHn
- B) CnH2n
- C) CnH2n+2
- D) CnH2n-2

- **6-** C2H4 + Br2 = ? What reaction occurs when the above chemicals react?
- A) substitution
- B) Addition
- C) Elimination
- D) hydrolysis
- **8-** A compound with the formula C6H6 is :
- A) hexane
- B) pentene
- C) 3-methylButane
- D) Benzene