

(Q2.) State whether the following equations are linear or non-linear and gives its order, degree, and the dependent variable, and independent variable. $3''_{+} 3'_{+} 3'_{-} 3$

	т.,			.u) X"+ ?	(+x=
	Lis	t of Differe	entials Equatio	ons	
Differential Equation	Order	Degree	Linearity	dep. variable	indep. variable
$y''' - 3y' + 2y = \sin(x)$	3	1	~	y	z
(1-u)x'' + 2x' - x = 0	2	•		×	u
$(y'')^3 - 2(y')^4 + y = e^s$	2	3	X	3	S
$\frac{\partial y}{\partial u} + \frac{\partial x}{\partial u} = 0$	•	N		u	×,y -
$\frac{\frac{\partial y}{\partial u} + \frac{\partial x}{\partial u} = 0}{\frac{dy^2}{dx^2} + 5\frac{dy}{dx} = \cos(x) \mathbf{y'}^{2} \mathbf{y'}^{2}$	rash J	2	×	Э	×
$\sqrt{(y')} - y^2 = e^t$		t	×	ÿ	+
<u>19 = 1'</u> d ² 3	- 9"	29	م م	-	au
Ix dy z	- 0	dx2	مربع		

(Q3.) Solve the following.

1. Verify that $y = e^{-2x}$ is a solutions of the following differential equation y'' - 2y' - 8y = 0.

y=-2e y= 4e-2x y=ezx ie ie $4e^{-2x} - 2(-2e^{-2x}) - 8e^{-2x} = 0$ 4e + 4e - 2x - 2x ? 0 = 0LHS = RHS 2. Verify that $y = xe^{2x}$ is a solutions of the following differential equation y'' - 4y' + 4y = 0. $y'=2xe^{2x}+e^{2x}$ $y''=2x(2e^{2x})+2e^{2x}+2e^{2x}$ = $4xe^{2x}+4e^{2x}$ y=zezx 9-49+49=0 حفرف $4xe^{2x} + 4e^{2x} - 4(2xe^{2x} + e^{2x}) + 4xe^{2x} \stackrel{?}{=} 0$ $4xe^{2x} + 4e^{2x} - 8xe^{2x} - 4e^{2x} + 4xe^{2x} = 0$ O = OCHS = ZHS ./

3. Verify that $y = \sin(3x)$ is a solutions or not of the following differential equation y'' + 9y = 0. y = Sin(3x) $y' = 3 \cos 3x$ $y'' = -9 \sin 3x$ $-9 \sin 3x + 9 \sin 3x = 0$ O = OLHS = RHS 4. Verify that $y = x \sin x$ is a solutions or not of the following differential equation y'' - 2y' + y = $-2\sin x$. y=zcosx+Sinx y=-zSinx+cosx+cosx y=xsinx y"= -xsinx + 200sx $y''_{-2}y'_{+}y = -2 sinx$ نعص -x sinx +2cosx -2(x cosx+sinx) + x sinx = -2sinx 2005x -2×005x -25inx = -28inx 2005x-2x cosx 7 0 LHS + R.HS it is not a solution

(Q4.) Determine whether the given first-order differential equation is linear (or) nonlinear in the indicated dependent variable $y(x-1)^2 dx + dy = 0$.

(Ty"+, y'+ y = x

 $\frac{y(x-1)^2}{dx} + \frac{dy}{dx} = 0$ نتے کں عددہ dx rs $(x-1)^{2}y + dy = 0$ y' + f(x)y = 0 $\frac{dy}{dx} + (x - 1)^2 y = 0$ inear deP = JindP=X (Q5.) If $y = c_1 e^x + c_2 x e^x$ is a solution to the differential equation y'' - 2y' + y = 0. Find the value of c_1 , and c_2 . If y(0) = 1, and y'(0) = 3. $y = c_1 e^{x} + c_2 x e^{x}$ $\mathcal{Y}(\mathbf{o}) = \mathbf{I}$ $1 = C_1 q^2 + C_2(0) q^1$ $I = C_1$ $y' = Ce^{x} + C_{2}xe^{x} + C_{2}e^{x}$ y'(0) = 3 $3 = Ce^{2} + (20)e^{2} + (2e^{2})e^{2}$ $3 = C_1 + C_2$ 3 = 1 + (2)

Cz = 2