Center of Mass and Linear
momentum
s 2




The Center of Mass

 If you through a ball upward, you can fairly easily predict its motion.

* However, if you through a bat, for example, then the mation is more

complicated

* To simplify analyzing the motion of any object, we use the concept of the

center of mass (com)

-

mx :; ( \‘\r \ “_‘:.) \ ) s v . I )
The center of mass of a system of particles is the point that moves as |f 1
1) all of the system’s mass were concentrated there Off «bfa) "‘)1' Ve (D ’,/‘ \\

2) all external forces were applied there. { 'J‘“;’ w(,\g‘qf,'_,.“ @ ./, a\\

/ \

 We can determine the center of mass for one big object or for a system of

—————

small particles




Center of mass for a system of particles

Two particles:
If you have two particles with masses m, and m,, separated by a distance d then the location of

m, m,

com (from m,) is: d O
m, d
X = —
com my + m,
. : >
More generally, we can use the coordinate of each particle:
_ myxi+mpx; _ myxq+myx; < Yeow
Xcom = m.+m or Xcom = M m; m,
1 2
where M is the total mass of the system (M = m,+m,) . v 2 (T; com
I 2 / —
Many Particles: Y
If you have n particles along the x axis, then the total massisM =m, + m, + - - +m, and
the location of the center of mass is:
mqix, + myx, + myxz + -+ myx, m; Mz m,

Xcom = M s
X

1

M

xcom

n <
E m;Xx;
i=1




Three Dimensions: If the particles are distributed in three dimensions, the center of mass must be identified by

three coordinates.
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= the coordinates of com is (x

YCOM:.BL

xcom

YCom

ZCOTTL

mixq + myx, + mgxg + -

M

_ Myy; t myy,; + mzys + -

M

mqz4 + moz, + m3Z3 + .-

M

M
=1
n
+ m,y, 1
= Mz m;yi
i=1
n
+m,z, 1
- MZ m;z;
=1

com? ycom’ Zcom)

Or, we can write the position vector of com as:

- A ~ ~
Tecom = Xcoml + Yeom) T+ Zcomk
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Solid Bodies: O [[ *
If the object has a continuous distribution of matter, then we use integration to locate com.
®

* Inone dimension:

V4

Y
A‘mi
1 : :
= Xcom = [ xdm where M is the total mass of the object, and dm = Am when (Am — 0)
* In three dimensions:
The coordinates of com are:
1 —
= — d
Xcom M j xam
Veom = %Jr y dm __ Again, com position vector will be: 7., = Xeomi + Yeom] + Zeomk
|
Zeom = | zdm | |




Example: Three particles of masses m, = 1.2 kg, m, = 2.5 kg, and m,; = 3.4 kg form an Y

equilateral triangle of edge length a = 140 cm. Where is the center of mass of this
system? (the coordinates of each mass is shown in the figure).
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Newton’s Second Law for a System of Particles

« Assume that a projectile is moving as shown in the figure
—

« If this projectile breaks in the air, the center of mass of all its parts will 775
4 prOJectﬂe

continue falling in the same trajectory of the projectile itself

.—_.— ‘

 We can neglect the individual motions of these broken parts, and consider - .
Trajectory . .‘

(path) R .

center of mass \ \

only in the motion of the center of mass (com) of the system.

* In this case, we assume that com has the total mass of the system.

» We apply all physics laws to this com instead of the whole system

\
> X-dX1S

* \We can apply Newton’s second law as:
s l-Q ? ; > R S F = M aCDr"\
)JJ | Fret = acpm Nesx
where, m\;f g, — ‘5/
ﬁ‘net IS the net force of all external forces that act on the system

M is the total mass of the system
d.om 1S the acceleration of the center of mass of the system (not the acceleration of any individual point of the system)

7



In three dimensions:

We can write the components of F,,,, and d,,, as:

Fret = Macoym, —

%
net,x — M Acom,x
= -
Fnet,y = Macom,y

-
net,z — M acom,z



Example: The three particles are initially at rest. Each particle experiences an external force as shown in the
figure. The directions are indicated, and the magnitudes are F;, =6 N, F, =12 N, and F; = 14 N. What is the
acceleration of the center of mass (com) of the system, and in what direction does it move?

y y
A F, F,
® o
4kg . 4kg com 45
CO? 8 kg °® 8 kg
i D
> X > X
4 ke F M a 4 kg
(] — 8 >
nu:,\-— cer x ¢ F,

™ - [
OC‘lam p 2 = comy — _""‘7
1%
Solution: M -/
We deal with this problem as if all the masses (total of M) are concentrated at the com, and all forces act on this single

point. D ( F:( S QR osh 4 Q)

9



Yy Fsmel= 12Casus = 8.5y y
F, ! F, A
- ' e com = fces® . =12 N
| L o 8kg |12cosus = 8.5L /
> L F]=6 N 450
g o : . > F,=14 N

4kg T 8'5"’ l6kg

F; = "f(:

! bn'6.83
fc\' mﬁ 6-tax ?:_-;
P ¥=19+85-€ =165 |  Fynex = 85 =27
OKCDM = RQG-X = |6'5 y

o =45 _ 053

Cem/  yaux$§

KX am = l.o3C + O 533 Q= I"°32+°‘531 =\-2m/s®



J,'e'}.('?yn — g”—;/: P=2xsS=10

“Linear Momentum P = mU | kg m/s

 |f an abject of mass m moves with a yelocity v, then we define its linear momentum p as:
T ©
lco m/¢ o0 '
"':c./ 1 @ (S Ve \_/(.S l

« pisavector guantity, and it has the same direction of ¥ (the linear momentum has the same direction as the

v

gl
Il
3
A{l)

velocity)

* The Sl unit of p is kg.m/s

* Note that this equation for a single particle only

11
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Force and Momentum:

« If an object moves with a momentum of p, then we can calculate the net force acting on this object from:

[0 2° AP= £ — f
IP R vuve Y e ] it _mu,-mY
’ ) Ss ) s ,S Rt Fret = — instantaneou rce
P”JJ‘ ,t’_w f{ Ne— opN .\ - v 'ﬂ-:ﬂ-'?;"‘ o> — 2(z°) - Z((G)
- //‘ .J Fnet=E average net force - Yo - 2 O

- 20 Kemk
The time rate of change of the momentum Ap of a particle is equal to the net force Fpop acting on the particle

« The direction of A is in the direction of the net force F,,. (’o.;--,'.p) l__: JAN P,: g_f_b

« . If there is no net external force, p of the object cannot change. b t 5

* Note that this equation for a single particle only F _ \.1 (\j

. - R _dp ; :

This equatloD Fo ot = — I similar to Newton’s second law because: o P o

s N F -PY -df

.--';Vb il {‘.’ o - dﬁ O d = O dv I = D (:
\.-/) :J:,)_,-' FnetZE:’FnetZE(mv):;’Fnet:mazFnetzma



m=0-T Y =5m/S

'\/; - =2m/s
Example: A 0.7 kg ball moving horizontally at 5 m/s strikes a vertical wall and
rebounds with speed 2 m/s. What is the change in its linear momentum? S
- — e
Solution: 2
O e

Remember that velocity and linear momentum are vector quantities: > _?;:

Vi=+5m/s=p,=mv;=0.7 x 5=3.5 kg.m/s

vi=—2mls=p;=mv,=0.7 X (-2) =—1.4 kKg.m/s - . - - . -

(.? / | J _}“9-"‘ s r20 L
LAp=pi—p; =—1.4-35=-4.9kg.m/s - b' P

DP-= @»- ﬁ.'_—_-_ m\f’p.— m Ug
— m(’l//-'Vc) _—;07(—2-—5)
0t 1) =49 /s
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Example: A tennis player hits the ball of mass = 0.057 kg reaching a speed of 58 m/s. Q v -

What is the average force exerted on the ball if it remained in contact with the racquet

for 5 ms (milliseconds)?
Assume that the ball’s speed just after impact is S8 m/s and that the initial horizontal

component of the velocity before impact is negligible. ‘g PO R
Solution:
.)..\J ‘e 30 vi_e ."’JJ-"“
v;=0m/s = p,=myv;=0.057 x 0 =0 kg.m/s ;:0-057 re
V=58 m/s = p; = mv; = 0.057 x 58 = 3.3 kg.m/s £t =5xX10°S
~.Ap=p;—p;=3.3-0=23.3kg.m/s Npg= 58 o/
Vi om/s
., Ap
F="" F=0P = G-Pc_mip.mu
At D = _—
bE Dt

-3
5X10 _cél2



The Linear Momentum of a System of Particles

» If you have a system of n particles, each particle with its own mass and velocity.

» Each mass has its own momentum
» The total linear momentum of the whole system Pis:

P=p,+p,+p3++p,

= - - - -
P =mvy + myv, + mgvz + -+ m,v,

P = M?-Cﬂ” Zenter of mass
vl/here, q\tu ' ,.? 21 .._.-.- o of the system
P is the total linear momentum of the system - V) + P V4 m 3 v 4
M is the tatal mass of the system -\.N:\)'-JC&J 1 - ()/

Ueom 1S the velocity of the center of mass of the system ﬁ»ql = M Cavm

SESN A e
* .. The linear momentum of a system of particles is equal to the product of the total mass M of the system and
the velocity of the center of mass 1?Cgm.

15



Force and Momentum:
 |If you have a system of n particles, each particle with its own mass, velocity and linear momentum, then the total

linear momentum of the whole system P

« The net force acting on this system is:

- u—e,‘l"c".)‘
= dP _ -
net = —— instantaneous net force
dt 0 0
- - -
- Aﬁ w ,—-s L Y @ o .J L] 0
Frece = 7 average net force

* The time rate of change of the momentum of a system is equal to the net force acting on the system, and is in the

direction of that force. e = ol L ,)',J! S N\
« - If there is no net external force, P of the system cannot change. = U\:\J\ r/ e S PPN L
- 1. -

: .= dP . . . :
« This equation F,,.; = - 1 similar to Newton’s second law for the system of particles because:

\J‘;’a/ -
7 Ny . dP| . d 5 AVeom _ =
\.’ 1'/ Fnet=EiFnetza(Mvcom):FnetzMT:)Fnet=|lwacom

16




Collision and Impulse = Ne I
We will understand the concepts of impulse and momentum through considering collisions between objects.

Single Collision

« Assume that you are hitting a ball with bat. Your force F(t) will change the linear momentum dp of the
ball

« If your force acts on the ball for some certain period of time t (your force starts at time t; and finishes at
time t;), then the momentum of the ball will change from p; to p.

* We know that { F = dp
I.dx - XF" fci 5 dE
Tmplus= 7 ; :t»fdp = Fg)dt
=>J dp =f F(t)dt
—
g=oFP e
=f-f =i | P
tf R
=mUp .mUY Aﬁ=j F(t)dt
ti
* Now we define a new quantity called impulse (7), where
63 oS (arly s o F Tl Ty
S, . R J = F(t)dt
» Jis avector, and has the same directionas F| — t;

«  Unitof J is kg.m/s

A AP =]




So we learned 2 new results: IT= tbkt = j Fde

1) force x time is called impulse = (special case, if the force is constant): J=Ft

2) The equation Ap = f means that the change in linear momentum of the object equals to the impulse (force x time)

I F ot

« However, when you hit the ball by the bat, your force is not constant
* Your force changes during the time At
* We can calculate your average force F, , by using impulse:

we know that

] = Fapglt
F. = L\ impulse of your force
= /avg - At p y

[

your average force

time

18



Series of Collisions>\P,te o alA—
» Now let’s consider the force on a fixed body when it is hit by n of identical projectiles

« Each projectile has a mass m and velocity v = each projectile has initial momentum

p=my

« Each projectile undergoes a change Ap in linear momentum because of the collision.

« The total change in linear momentum for n projectiles during interval At (

impulse on all projectiles) is:
~’ 2

and the total impulse on the target is (it will be on the opposite direction):

.. the average force F

avg

P J=-nAp

J=nlp

acting on the target during the collisions:

N
—

Projectiles

Target

e totai

Y

o ) =

J=nbPp

Favg —

J

At

n
= Favg = _A_tAp = Favg =

where Av is the change in the velocity of the projectiles

F= nop_ n(@- P) Favg——@Av

DE Dk

\/

|
|
|
|
i
LAV =V —
n Av I-
——m
At |
|
i
:thenvf
—=NM DYV :Av:vf
DE VN —

e — — — — — — — — — — — — — —

Remember that Av = v, —v;

1) If the projectiles move with
velocity v but then stop upon
impact, then v;=0

V,=0-v=—-vVv

2) If the projectiles bounce
(rebound) directly backward from
the target with no change in speed,

-V
V,;=—V—-V=-2V
R N
v b



>

Example: a car collides with a wall as shown in the figure. Before the collision
the speed was v; = 70 m/s at 30° and it became v; = 50 m/s at 10° after the

collision. If the driver mass m is 80 kg, (a) what is the |mpulse] on the driver due
to the collision? (b) The collision lasts for 14 ms. What is the magnitude of the

average force on the driver during the collision?
2 J=DP = f}- P,; = m(j/e-"”’?/l.
=mM(Vp-"W
j; ( { ‘;K) , C > x

L 10° \ v
F6Sin3p , B/ l pj‘
=SoSinld

5"060530 ‘u‘)’

y
A

3_,\ = 86 (50@5\0 — Fo0 Cosgo)
Do k"“'~3‘?3> = qlo .5 ICgn/s

Jy= m(% 'j)
= 80 (,. S'DS\'{} (O = 70§"n3 D):.'a-?qc\g om /S 20

>




T = -a10:5¢ ~3uas)

_(j— = ﬁ" 410.5)* +(34 qg)z’ = 3612 ¥9m/¢

O = tq“-‘(_-_:iﬁ'tQS' = FS.U 4180 = 255 4
a0

-qi0 e
(4]
F -3 . 3a02
aN9 I = """_'\“x'o_g

— l.ng‘Og Y J



Example: A series of 3 g balls hit a fixed box at the rate of 100 balls/min, and Y
the speed of each ball is 500 m/s. Suppose too that the balls rebound straight g o o o o o 3 > — Target |
back with no change in speed. (a) What is the change of linear momentum of Projectiles
1 ball? (b) What is the impulse on 100 balls? (c) What is the magnitude of the 1] 12
average force on box?
\
> QQ
0) NP = P ~ (’“:: m(’V ,..“V) g
2 f ¢ ~-500%F——
74

b) T=nDP = 106 (-3) = - 200 ¥FI™s

¢y p=10o  t=1Imin=€0S

- - --n L - 3) —
oL =0 B8 =00 £3) = sy



Conservation of Linear Momentum u;0-$| g :/Jf et
-~
* If there is a system which is:
J 2.7° 1) Isolated: no net external force acts on the system 059 €' (70K )58, rLo !

&5’ 2) Closed: no mass enters or leaves the system 'ALCS 5’} :‘L)‘.’-’:’X . \;L;_S\ ((,_',,51

ZE e e

-

| P = constant (13 has the same value at all time)

* This means that:

(total linear momentum at some initial time t;) = (total linear momentum at some later time t;)

S'e¥t e |B=p| S4 2F
- — —
This is called the law of conservation of linear momentum 4

(2_2\ D .-q,)\;

. -+ P does not change with time t (for isolated and closed systems), then we can write:

dP
E=O 23




In 3 dimensions, we can apply the law of conservation of linear momentum.as following:

 |f the component of the net external force on a closed system ilong an axis, then the component of the

linear momentum of the system along that axis Qannot chang@

» For example, in the projectile motion, the only force acting on the projectile is gravity (downward), which is in

the y-axis direction. There is no force in the x-axis direction = linear momentum in the x-axis direction I3x IS

——

conserved (but B, is not conserved)

— )S (O
Gravitational force acts along y-axis direction @ S & @
_ (vy 1s NOT constant)
J’"f":’m 13;, 1s NOT conserved P(': 25

. Y
\,_D); i'Z / — /-—-hf._\\ G)
. ' . | No net force in this direction (vy is constant)
LY X o L5 L ’ ’\\___________ - P, is conserved ’ 6_QD o
\
&L o052 2IX [)f- =25

X B \
: »  X-axis

24



P Z Ev°

Example: a canon is at stationary before it fires a ball of y  Stationary
mass m, = 2 kg with a velocity v, = 50 m/s as shown. What :
are the magnitude and direction of the canon’s velocity if its
mass m, = 110 kg?

Solution:
.+ there is no external force ~ o
~. linear momentum is conserved o =YL
P =F '
In the y-axis direction: 2@ = < i
There is no motion = v;, = v, =0 O =m, U,og ¥ M2 (sz- T
In the x-axis direction: 6 = LAX50 + 110 K'\)zﬁ
Pix:Pfx \Ob A \l()(,/q;:
0 =myvy + myv,, WO ‘Vq_ﬁ .-_-:_‘ \OO
MyVyy = —MqVysq (m, and v, are for the canon after firing)

—2X50 "F. & (l/?. - 100‘6-6(

.. the canon will move with a velocity of 0.9 m/s in the negative direction of the x-axis 25



Example: repeat the last example if the canon is moving L Moving with velocity /
with a velocity V = 0.9 m/s in the positive x-axis direction,
before it fires.

o—

Solution:
- there 1s no external force
- linear momentum is conserved

Fe
()

ﬁi=_)f mlq/‘b""'m:qu?-(::m'q/'ﬁ +m2 Z‘f
In the y-axis direction:
There is no motion = v,; = v,, =0 M1 Viet 2 V- m, ']‘/’e - ’){!ﬂ
In the x-axis direction: ma
Note that the mass of the system before firing is M = mass of canon + mass of ball = 110 + 2 = 112 kg
Pix = Prx N\, . 2xo9+]10401 ~2x 50
MV = mqvy; + MUy f2. = O

MyVyy = MV —myv,y
MV —myv,4 _ (112 X 0.9) — (2 x 50) _ 100.8 — 100

= /.3 X -3 :0'0613
m, 110 110 7:3 %107 m/s

m/s

Ux2 =

~. the canon will continue moving in the positive directing of the x-axis but with a velocity of 7.3 x 1073 m/s

26



Example: A rocket is fired vertically upward. When it reaches a speed of
300 m/s, it explodes into three fragments having equal mass. One fragment
continues to move upward with a speed of 450 m/s following the explosion.
The second fragment has a speed of 240 m/s and is moving east right after
the explosion. What is the velocity of the third fragment right after the
explosion?

Solution:

Let us call the total mass of the rocket M = the mass of each fragment is M/3.

. the system is isolated and closed = P; = P; P(" = P P

P; = Mv; = M(300) /M/\] \/ .\-&\Iz-t ’m,V_g

y-axis

A

\[ '3!:;61'1

i

M/3

— M/3¢
WS

e m——

/S

ﬁf = %(4501“) + %(2402) + %vf (where v, is the unknown velocny of the third fragment)

- M(300)) = T (450) + 3 (2400) + T vy

N = 14507 + 2 (2400) + 1
(300) = - (450)) + < (2400) + vy

Vo = (W + V2 +V3)
300] =+ (450§ +240 L+ V3)
o0 = 459)+ 24ol + Vg

> X-axis

27



A00) -U4S0) - 240l = \[g

(3007) = (1505) + (801) + > vy
~vp = —(801) + (300§) — (150))

~vp = —(801) + (150))

v, = —3(801) + 3(150§)

ve = (—2400) + (450))

. the third fragment will move with a velocity component of 240 m/s in the negative
direction of x-axis (west) and another velocity component of 450 m/s in the positive
direction of y-axis (north): o \sy |

_1v_y -1 450

1
0 = tan = tan = —61.9° - yco
Vs —240 E'} — 1 an

6 =—619°+ 180° = 118.1°
- 61-§180
= 1\&1°

\\\3\:f2qc’¢_\_qg 6% =50 m

Uso ) =240 = V3
— 290 + YSo) -::\yf_ga.s

-

»

X-axis
28



Momentum and Kinetic Energy in Collisions

When objects collide, there are 2 types of collisions

~
&>\
IS
elastic collision inelastic collision
No loss in Kinetic energy There is some loss in Kinetic energy
Kinetic energy is conserved Kinetic energy is NOT conserved
it is the same before and after the collision it is NOT the same before and after the collision)

It IS the same before and after ision) It 1S the same before and after the collision)

B po e \edl Lo Jd o
- P(' = \019 = el g ‘
c\o,A? PR NIV
» Usually, there is some loss in kinetic energy in every collision in real life. However, if the loss is small, we can

consider this collision as an elastic collision. &:b

* Inthe inelastic collision, if the bodies stick together, the collision is called

e)\_pJ) )_g_) V_Q_Q)t—’ﬁ-\)f\_ﬁvu-,('\))f\ ,-C"ALf‘.)\_a_} e



Inelastic Collisions in One Dimension
Remember: in the inelastic collision: some kinetic energy is lost (K is not conserved).

~

However, linear momentum is conserved. . . C)"’

One-Dimensional Inelastic Collision %~ < 245 |
- ‘.') ’.F

If there are 2 bodies colliding:

Body 1 with mass m; with velocity v,; before collision and v, after collision ~ ;_»J

Body 2 with mass m, with velocity v,; before collision and v, ¢ after collision,

Then we can write the law of conservation of linear momentum for this system as:

(total momentum ﬁi before the collision ) = (total momentum 15} after the collision )

.. considering each body in this system we can write:

Di1 + Piz = Dr1 + P2

we now that p = mv,

= [MyVy; T MyVy = MyVyg + MyVyg

Body 1

Body 2

—

V1i Vi

Before  mmmmm> —>

m

After

o

- E}:’;ﬂ’._‘)l

30



c;.i?/(\r‘:"-" Y’)\:_S

it ol st Coll

Completely inelastic collision means that both bodies stick together after collision.

Assume that Body 2 was at rest before collision (= v,, = 0), and from the law of

conservation of linear momentum we can write:

mv,; + #¥y,

mv,; = (m;+tm,)V

(5 .}J\__y‘;‘,ﬂ'jlﬁp\ i‘\s".i‘

=m, V+m,V——" |

—

V1
Before —> {; =0
i
Q Q
m Mo
Projectile  Target
V
After >
QO
mp + Mo

V is the velocity of the stuck-together

bodies after collision

m
V= 1%
\m1+m2

1i

d

/

MY +

mz"}zd g q/

m) XMy

Y R ST R i

31
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\elocity of the Center of Mass

S NN I s i I o I A 4

If the system is closed and isolated = no net external force ats on the system =

the velocity of the center of mass v,,,,, cannot be changed (v,,.,, is constant),

We know that:
P=Mv.m = (ml + mz)ﬁgg_m

.

P
my +m,

but P = p;; + piz

5 _Pu + Di2
com mq + m,

Usom 1S the velocity of com of the system
pi1 1S initial momentum for Body 1
D> 1s initial momentum for Body 2 . \; f 3
m; IS mass of Body 1

: f \
m, IS mass of Body 2 (Z

v
~7
") /"

The com of the two
bodies is between
them and moves at a
constant velocity.

\
0

—

VC()[I]

V1 _;;E

Here is the m )
l Here is the
> x—%:/ stationary target.

incoming projectile.

ollision!

ra

The com moves at the

same velocity even after Y

the bodies stick together. =
&=

A gﬁ

32



Vii v2i=0

—
Example: A 3.5 g bullet is fired horizontally with a speed v,; at a block B d,g
at rest on a frictionless table. The bullet passes through block (mass
1.2 kg) and leaves with a speed v, = 720 m/s . The block ends up with
speeds v, = 0.63 m/s. Find the speed vy; of the bullet as it enters the

block.
] ).ﬂ-) Vs
Solution: . e viy
. ] —_—
We apply the momentum conservation because the system is closedand | _______ 5
Isolated:
MqVq; + MyVy = MyVag + MoV PL' — P P
MV = MV + MoV (because the block was stationary before collision) My %ﬁ.' + M: Yﬂ,'V;L ¥ m?‘é,e
- vV, mzaY

_mvytmpvy (35X 107F X 720) + (12 0.63) _ Vo= 1, ’f:“ 2f

e 3.5 x 103 = 936m/s ‘

Y= B58x F20+ 2 X063
3.5x\6 3

| = q3 6[”\/5' 2

V

.—‘



Example: A 3.5 g bullet is fired horizontally at a block at rest on a frictionless table. The bullet embeds itself in.
the block (mass 1.8 kg). The block ends up with speeds V = 1.4 m/s. Find the speed v, of the bullet as it enters

the block.

Solution:

Both the bullet and the block are stuck together

. We can use the equation:

where, m, is the bullet mass

m, is the block mass

m;+m

v f—
i
m

3.5%x1073+1.8
35x10°3

v, = X 1.4 =720m/s

.—Q)'?/(\Kj,\s. f\ké.) SV

V1 — |
®  __ D
{]/_-_-_- m;’V{(-f’ M
B m, +m 2
’)/(m:-rmzl = Ui

)"\/ll

[ L{(.?S'X\é Sy 8 _ 420"‘/r
3Sx107°

\

/Un'
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* Remember: in the elastic collision, total kinetic energy of the system is conserved (does NOT change)

Elastic Collisions in One Dimension

* Note: In the elastic collision, the kinetic energy of each body may change, but the total kinetic energy of the system
does not change. 32 ®__, @ Al SAEN D f S
0 o 6

(total kinetic energy before the collision) = (total kinetic energy after the collision)

Kli + Kzi == Klf + KZf

1 , 1 , 1 , 1 ,
S My + 5 MaVg; = 5 My Vi + 5 MaVsp
- - \ - \
\ - _;-Q) \
We will study 2 cases: \3 ‘ 2 s\ — v\
WD P 2 2
1) Stationary Target A . ; . | Q)

2) Moving Target

35



Moving Target

Conservation of momentum: ~y — (J —x
: m Hic
MyVyi + MyVyi = MyVye + MyVy ol ! - .
Vg v, g
Conservation of kinetic energy:
v — mi—m; ] 2 my )
1 2 1 y 1 2 1 2 j 1f mq+m; Li mq+m; 2t
Emlvli + Emzvzi = Emlvlf + Emzvzf /
- \n) 7~ 2my m; —my
2 Vo = Uy t+ V2i
m4q + m, m4q + mo-

(_.3 f\()@\ ) (')ké'/-",\?b;,\/“"/' ol e ea\.bg;..\:-‘-’

From these equations we can calculate the final velocities of each body (after collision)



ez ( ;,J/La_a gt 2 )

Stationary Target

If the target is stationary (at rest) = v,, =0

We can use the same equations from the previous slide but with v,, = 0:

m; —my
Vir = V1
! m;+m,
2 m1
Uyr = V1
f ml + mz !

From these equations we can calculate the final velocities of each body (after collision)

—
Before Vy;
-

e Vc)!;: 0
O

Fay

m, Mo
Projectile  Target

3

-
=

After >

m 1

Vif =
) m1+m2

v s
2f m4q + m,

m; —mp

V1i

2m1

V1i
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Example: A ball (A) of mass 6 kg is moving at a speed 3.5 m/s, collides with another

motionless ball (B) of mass 8 kg. What are the velocities of the two balls after the Vg = 3.5m/s vpi =0

collision? Suppose that the'cTtTision Is perfectly elastic. e
. > 5

me

. Vacz o
Solution:

~ The collision is elastic, and the ball (B) was at rest before collision (stationary target) b= M -Ma ’\/“
W = -z L

.. We can use the equations:

M +/Mma2
vAf — D4~ Tp Vai and va= 2 ma Vai \/IF = .6—-'-—g A 3"3. - —OrS m/s.
mag+mpg my+mp 6..-\-2
* Velocity of the ball (A) after the collision: v, = nmlA;ZB Vg = g X 3.5=—-05m/s
A B
— \ :
: . 2my 2X6 (UQF - 2m V(L
* \elocity of the ball (B) after the collision: vgr= —— Uy = o X 3.5=3m/s MyxM2
A B

This means that ball (A) will recoil and move the negative direction of x-axis after collision with a speed of 0.5 m/s,
while ball (B) will gain a speed of 3 m/s in the positive direction of x-axis after collision
= 2X¢ x3s

vy =—05m/s vg =3m/s 6 &

\JzC- = 3m/S

—0 ) )




| ) . _}Ir‘“‘ Ai
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Example: Box A (mass 1.6 kg) slides at a‘@ocity of 5.5 m/s into Box B . V6 ] .
(mass 2.4 kg) that moves with a velocity of 2.5 m/s, along a frictionless Orele = BUBE " - %)

surface as shown. After collision, velocity of Box A becomes 1.9 m/s and
velocity of Box B becomes 4.9 m/s. Is the collision elastic? R ! vg 14

O (ska.»"\ L0 V&

50z L ay?

PES RN
Solution:
To see whether the collision is elastic, we compare the total kinetic energy before the collision with the total Kinetic
energy after the collision:

Before the collision: K, = ;mlvAl + = mzvﬁl >< 1.6 X 5.52 + X 2.4 % 25%=317]

after the collision: K; = mlvAf +- mszf = >< 1.6 X 1.92 + X 2.4 X 4.9% =31.7]

- the kinetic energy before collision = the kinetic energy after the collision (K; = K;),

~. the collision is elastic.
N —— T —

S
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Example: Two spheres approach each other head-on with the
same speed and collide elastically. After the collision, one of the
spheres, whose mass is O 3 kg, remains at rest. (a) What is the
mass of the other sphere’P (b) What is the spe speed of the two-sphere
center of mass if the initial speed of each sphere is 2 m/s?

\{ - &
Solution: mi= O §
Before collision, Sphere A was moving in the positive direction while sphere B was moving in the negative direction,

and both spheres had the same speed v:

Vypi =V O_mA—va_ 2mpg
vBi = — 7 ma+mpg ma+mpg
__MmMp—mp 2mpg
) 0= mat+mg  mg+m
b Ma=mp 2 mp , Atmp Atmp
Af — Al Bi
mag+m ma+m
Atmp Atmp ma—3mg
map+mpg

But we know that sphere A stopped after

collision: 0=m, —3mg
vAf =0
, 0=03—-3mg
0=—4"5y =5 (—v)
ma+mpg ma+mpg 0

3
mpeg = ? = (0.1 kg 10



b)

5 __DaitDBi

COm — ma+mp

> __ MV +MmpVp;
Veom =

mapt+mpg

Remember that:

Vai =V

MAVAi+tMBUR;

%
v
com ma+mpg

0.3%2+0.1X(—2)
0.340.1

0.3X2—-0.1X2
0.3+0.1

=1m/s

VYp=0=rm-"2 q] oamz ~f

—

M]'f'mz.- th’"’z
Y =y oy/:_._.— szﬂ/
.

m,/JH%/ﬁ m%
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My—mar — 2m 2

v, = BYY)'),

0.5 = 3Im~

\{Q@m = i Vg —+ My V¢

M M 2

—_

My 2

= 03(2)— (on)(2)

0.3 yo-)

— \N\w/C
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