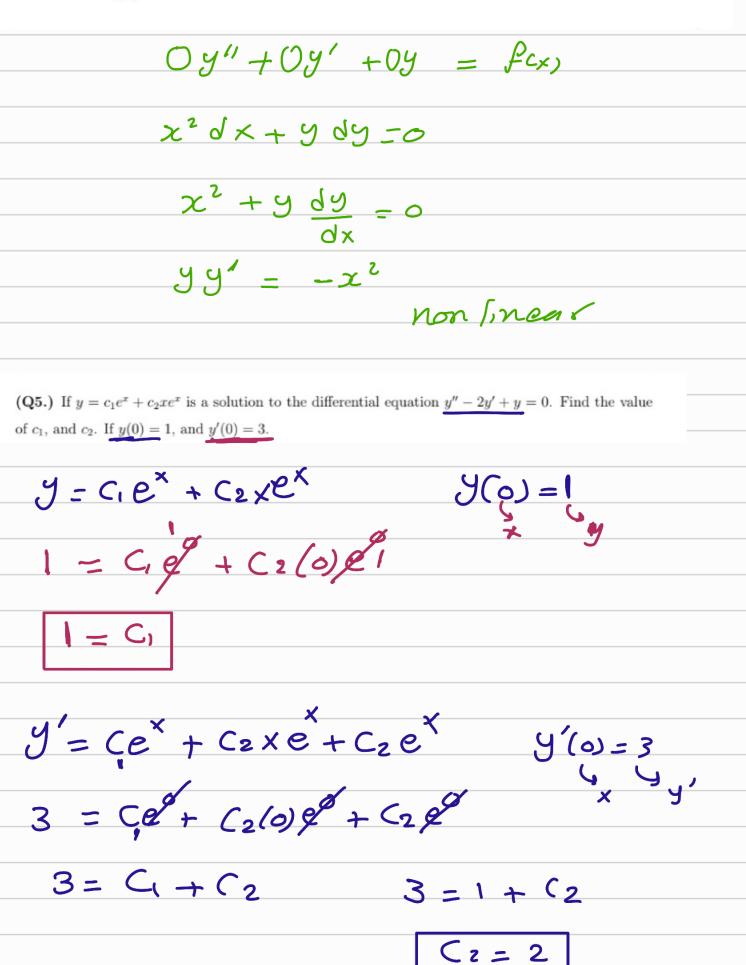


(Q2.) State whether the following equations are linear or non-linear and gives its order, degree, and the dependent variable, and independent variable.

List of Differentials Equations					
Differential Equation	Order	Degree	Linearity	dep. variable	indep. variable
$y''' - 3y' + 2y = \sin(x)$	3	N	~	.4	x
(1-t)x'' + 2x' - x = 0	2	N		x	t
$(y'')^3 - 2(y')^4 + y = e^s$	2	3	×	Ч	S
$\frac{\partial y}{\partial u} + \frac{\partial x}{\partial u} = 0$	1	۸		ų	XIY
$\frac{\frac{\partial y}{\partial u} + \frac{\partial x}{\partial u} = 0}{\frac{dy^2}{dx^2} + 5\frac{dy}{dx} = \cos(x)}$	1	2	メ	у	X
$\sqrt{1 + (y')^2} - y^2 = e^t$	1		X	y	


(Q3.) Solve the following.

1. Verify that $y = e^{-2x}$ is a solutions of the following differential equation y'' - 2y' - 8y = 0.

y=-2e y= 4e-2x y=ezx ie ie $4e^{-2x} - 2(-2e^{-2x}) - 8e^{-2x} = 0$ 4e + 4e - 2x - 2x ? 0 = 0LHS = RHS 2. Verify that $y = xe^{2x}$ is a solutions of the following differential equation y'' - 4y' + 4y = 0. $y'=2xe^{2x}+e^{2x}$ $y''=2x(2e^{2x})+2e^{2x}+2e^{2x}$ = $4xe^{2x}+4e^{2x}$ y=zezx 9-49+49=0 حفدف $4xe^{2x} + 4e^{2x} - 4(2xe^{2x} + e^{2x}) + 4xe^{2x} \stackrel{?}{=} 0$ $4xe^{2x} + 4e^{2x} - 8xe^{2x} - 4e^{2x} + 4xe^{2x} = 0$ O = OCHS = ZHS ./

3. Verify that $y = \sin(3x)$ is a solutions or not of the following differential equation y'' + 9y = 0. y = Sin (3x) y'= 3 cos 3x y"=-9 Sin 3x $-9 \sin 3x + 9 \sin 3x = 0$ O = OLHS = RHS 4. Verify that $y = x \sin x$ is a solutions or not of the following differential equation y'' - 2y' + y = 0y=xcosx+Sinx y=-xSinx+cosx+cosx y=xsinx y"= -xsinx + 200sx y"-2y'+y = 0 نعص $-xsinx+2\cos x - 2x\cos x - 2\sin x + xsin x = 0$ $2\cos x - 2x\cos x - 2\sin x \neq 0$ LHS + RHS its not solution

(Q4.) Determine whether the given differential equation is linear (or) nonlinear in the indicated dependent variable $x^2 dx + y dy = 0$.

(Q3.) Verify whether the given y is a solutions or not of the following differential equation.

1. $y = e^{-2x}$, y'' - 2y' - 8y = 0. 2. $y = xe^{2x}$, y'' - 4y' + 4y = 0. 3. $y = \sin(3x)$, y'' + 9y = 0. 4. $y = x \sin x$, y'' - 2y' + y = 0.

(Q4.) Determine whether the given differential equation is linear (or) nonlinear in the indicated dependent variable $x^2 dx + y dy = 0$.

(Q5.) If $y = c_1 e^x + c_2 x e^x$ is a solution to the differential equation y'' - 2y' + y = 0. Find the value of c_1 , and c_2 . If y(0) = 1, and y'(0) = 2.

GOOD LUCK _____

Copyright©2024 Dr. Waleed Hamali JAZAN UNIVERSITY Department of Mathematics