

- a) Boston is the capital of Massachusetts.
- b) Miami is the capital of Florida.
- c) 2+3=5.
- **d**) 5 + 7 = 10.
- e) x + 2 = 11. not Proposition
- f) Answer this question. nob proposition

3. What is the negation of each of these propositions?

- a) Mei has an MP3 player.
- b) There is no pollution in New Jersey.
- c) 2+1=3.
- d) The summer in Maine is hot and sunny.
- a) Mei does not have an MP3 player.
- b) There is pollution in New Jersey.
- c) $2+1 \neq 3$
- d) It is not the case that the summer in Maine is hot and sunny.

10. Let p and q be the propositions "The election is decided" and "The votes have been counted," respectively. Express each of these compound propositions as an English sentence.

- a) ¬p
- c) ¬p∧q
- e) $\neg q \rightarrow \neg p$
- g) $p \leftrightarrow q$

- b) $p \vee q$
- d) $q \rightarrow p$
- $\mathbf{f}) \neg p \rightarrow \neg q$
- **h**) $\neg q \lor (\neg p \land q)$

- a) The election is not decided.
- b) The election is decided, or the votes have been counted.
- c) The election is not decided, and the votes have been counted.
- d) If the votes have been counted, then the election is decided.
- e) If the votes have not been counted, then the election is not decided.
- f) If the election is not decided, then the votes have not been counted.
- g) The election is decided if and only if the votes have been counted.
- h) Either the votes have not been counted, or else the election is not decided and the votes have been counted.

11. Let p and q be the propositions							
p: It is below freezing.							
 q: It is snowing. Write these propositions using p and q and logical connectives (including negations). 							
							 a) It is below freezing and snowing. PΛ 9. b) It is below freezing but not snowing. PΛ - 9. c) It is not below freezing and it is not snowing PΛ - 9. d) It is either snowing or below freezing (or both). P 9. e) If it is below freezing, it is also snowing. P→ 9. f) Either it is below freezing or it is snowing, but it is not snowing if it is below freezing. (P 9.) Λ (P→ - 9.) g) That it is below freezing is necessary and sufficient
for it to be snowing. $\rho \longleftrightarrow \rho_{i}$							
 13. Let p and q be the propositions p: You drive over 65 miles per hour. q: You get a speeding ticket. Write these propositions using p and q and logical connectives (including negations). a) You do not drive over 65 miles per hour. P b) You drive over 65 miles per hour, but you do not get a speeding ticket. P							

- a) You buy an ice cream cone if and only if it is hot outside.
- b) You win the contest if and only if you hold the only winning ticket.
- c) You get promoted if and only if you have connections.
- d) Your mind will decay if and only if you watch television.
- e) The train runs late if and only if it is a day I take the train.

33. Construct a truth table for each of these compound propositions.

a)
$$(p \lor q) \to (p \oplus q)$$

a)
$$(p \lor q) \to (p \oplus q)$$
 b) $(p \oplus q) \to (p \land q)$

c)
$$(p \lor q) \oplus (p \land q)$$

c)
$$(p \lor q) \oplus (p \land q)$$
 d) $(p \leftrightarrow q) \oplus (\neg p \leftrightarrow q)$

e)
$$(p \leftrightarrow q) \oplus (\neg p \leftrightarrow \neg r)$$

f) $(p \oplus q) \rightarrow (p \oplus \neg q)$

f)
$$(p \oplus q) \rightarrow (p \oplus \neg q)$$

				(a)			
p	q	$\underline{p\vee q}$	$\underline{p\oplus q}$	$(p\vee q)\ \rightarrow\ (p\oplus q)$	$\underline{p \wedge q}$	$(p \oplus q) \rightarrow (p \wedge q)$	$(p\vee q)\oplus(p\wedge q)$
T	T	\mathbf{T}	F	F	\mathbf{T}	T	D
\mathbf{T}	F	\mathbf{T}	T	T	\mathbf{F}	F	T
\mathbf{F}	\mathbf{T}	\mathbf{T}	T	T	F	F	T
\mathbf{F}	F	\mathbf{F}	F	T	F	T	F

a)
$$p \oplus p$$

b)
$$p \oplus \neg p$$

c)
$$p \oplus \neg q$$

d)
$$\neg p \oplus \neg q$$

e)
$$(\underline{p \oplus q}) \lor (\underline{p \oplus \neg q})$$

e)
$$(\underline{p \oplus q}) \lor (\underline{p \oplus \neg q})$$
 f) $(\underline{p \oplus q}) \land (\underline{p \oplus \neg q})$

$$\begin{array}{c|cccc} p & p \oplus p & \neg p & p \oplus \neg p \\ \hline T & F & F & T \\ F & F & T & T \end{array}$$

