

Objectives:

After completing this chapter, you should be able to

- Organize data using a frequency distribution.
- Represent data in frequency distributions graphically, using histograms, frequency polygons, and ogives.
- Represent data using bar graphs, Pareto charts, time series graphs, pie graphs, and dot plots.
- Draw and interpret a stem and leaf plot.

		<日 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
4 / 73	Hazar Khogeer	Introduction to statistics
Chapter 2		
The purpose	of this chapter	
This chapter	explains how to	o organize data by
Convert r	aw data into a d	ata array.
Construct	:	
Frequencies	ency distribution	s.
	ative frequency di	
A cur	nulative (relative)	frequency distribution.
Present t	ne data by const	tructing charts and graphs. The
	-	ted here are histograms,
		ives, pie graphs, pareto charts,
•	series graphs.	
	• •	e characteristics of a frequency
•		am, called a stem and leaf plot is
	•	ani, caned a stem and lear plot is
also expla		
5 / 73	Hazar Khoge	Introduction to statistics

2-1 Organizing Data

Raw data is the data collected in original form.

Example:

Suppose a researcher wished to do a study on the ages of the 50 wealthiest people in the world. The researcher first would have to get the data on the ages of the people. They are called **raw data** and are listed next.

45	10	~		05	جنبار خبام	
45	46	64	57	85		
92	51	71	54	48		
27	66	76	55	69		
<u>45</u> 92 27 54	44	54	75	46		
61	68	78	61	83		
88	45	89	67	56		
81	58	55	62	38		
55	56	64	81	38		
49	68	91	56	68		
46	47	83	71	62		
					사용 문화 송 문화 이 문	590

6/73

2

Hazar Khogeer

Row data

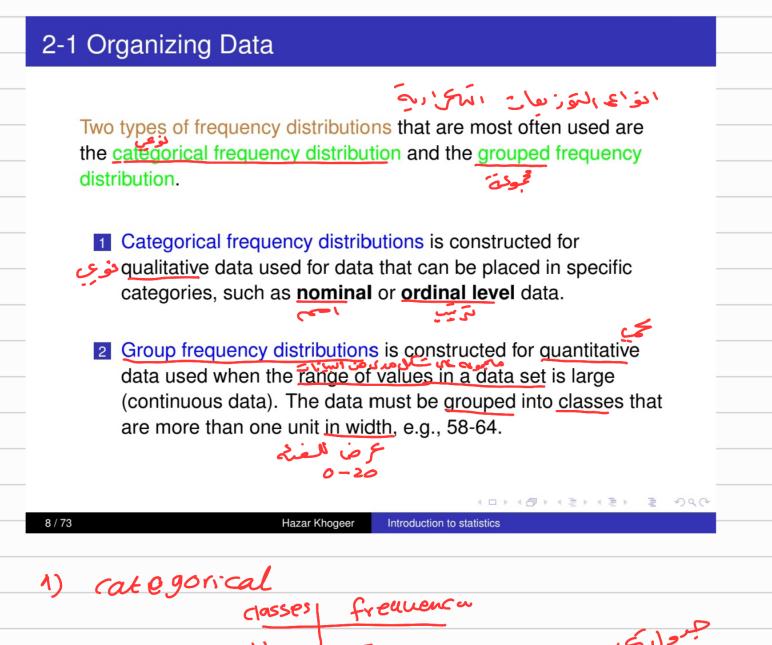
Introduction to statistics

دراسة هول عدد ماعار استحرام الجوال

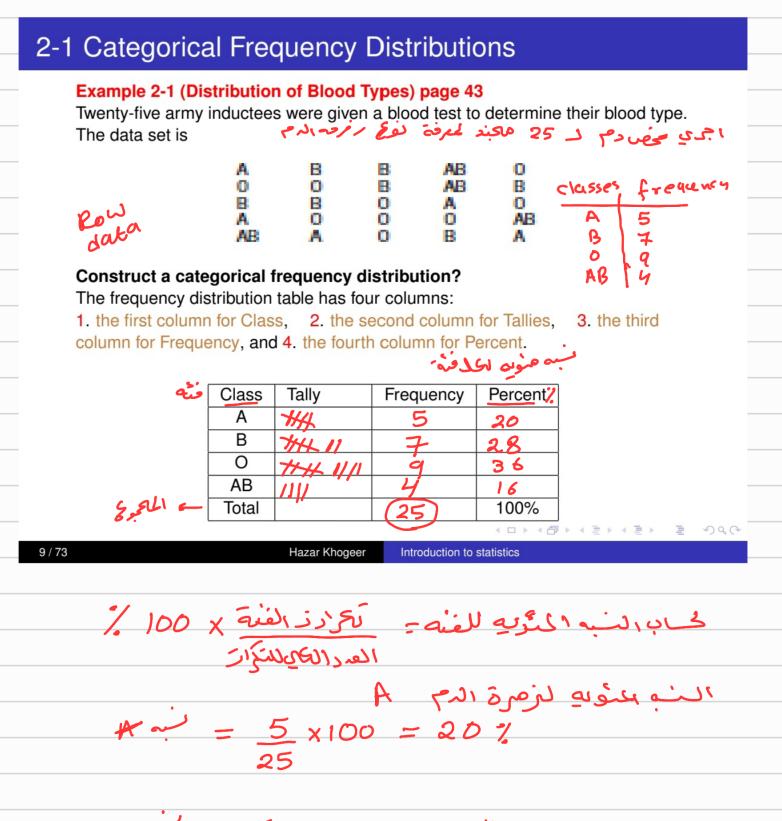
10, 20, 0, 1, 5, 4

تتضيم البيانات

When the raw data are organized into a table, which is called frequency distribution, the frequency will be the number of values in a specific class of the distribution.


Frequency distribution is the organization of raw data in a table form, using classes and frequencies.

تذطب البيانات مي حيدول التوذيع التكراري ولعتب الحا م تكارات وفناق


For more information see page 42 -43 of Bluman's Book

frequency: and and is is an

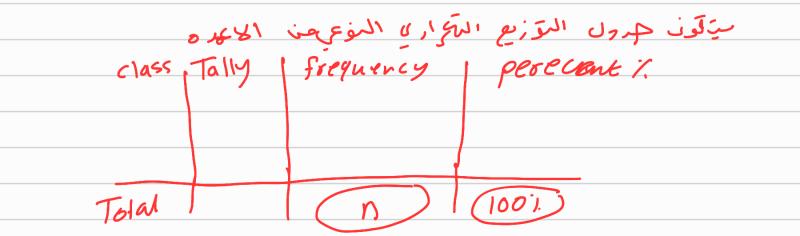
7 / 73	Hazar Khogeer Introduction to statistics
frequ	Ancy Nistributions, 155 actual dens
	frequency (21,55)
(dasses) Juie	frequency (J.J.
املى تحساكات	10 - il il a 1/2 1/5 - 1/2 2
من کاری 10 مرای <i>ت</i>	60
هن 10 الى 15 <i>سا</i> ية	20
83 ⁵¹ 9 0110 02	
اکترمن من کا سے	
Starty of Open	100 - Lipex 5-5
	محود و لا جا بات

	classes	frequence
س ارفام	black	5 July 200
	white .	
	red	F dilais
	blue	المحكين ا مشرافي 15
σ	ther	3
2) (rei) classer	freque	مد کر سب
0-20	3	
20-40	Ŧ	2) group frequency
40-60	2	distribution
< 60		

 $B \sim = \frac{1}{25} \times 100 = 28!$

2-1 Categorical Frequency Distributions

Class	Tally	Frequency	Percent
Α	##	5	20
B	-##1	7	28
0	-##TIII	9	36
AB		4	16
Total		25	100%


Example 2-1 (Distribution of Blood Types) page 43

$$\% = \frac{f}{n} \times 100 = \frac{5}{25} = .2 \times 100 = 20$$

For more information see page 43-44 of Bluman's Book

1 = 5 =0

تردر الفية ٢ (四)・(国)・(国) E DQC 10/73 Hazar Khogeer Introduction to statistics

2-1 Categorical Frequency Distributions

Example 2.2

New restaurant wants to explore the impression of visitors about the customer service. Sample of 20 visitors selected randomly and their impression noted as اراد مطعیہ عبر برمع فہ انظیام رزار جول جذب الطعہ سے ال عنه below

Good Bad Good Bad	Excellent Good Excellent Good	Excellent Good Excellent Excellent		Excellent Excellent Good Excellent	متونہ من دی خرم Good Bad Good Excellent
Construct a c	categorical frequ	uency distrib	ution?		
	Class Excellent	Tally	Frequency	Percent	9 x100 = 45

	Good	1+++ 111	8	46	$\frac{8}{100} \times 100 = 40$
	Bad	111	3	15	$\frac{8}{20} \times 100 = 40$ $\frac{3}{20} \times 100 = 15$
	Total		20	100%	20 100
$\chi = \frac{f}{2}x$	100		V	~	
11 / 73		Hazar Khogeer	Introduction to s		

2-1 Categorical Frequency Distributions

Solution:

Class	Tally	Frequency	Percent
Excellent	-##*1111	9	45
Good	-##TIII	8	40 40
Bad		3	15
Total		20	100%

45% Jer of a asip

◆□ > ◆□ > ◆豆 > ◆豆 > ◆豆 > = □

DQC

2-1 Categorical Frequency Distributions

Solution:

Class	Tally	Frequency	Percent
Excellent	-##TIIII	9	45
Good	-##*111	8	40
Bad		3	15
Total		20	100%

・ロト ・ 四ト ・ ヨト ・ ヨト ・

æ

هدادل التوزييات المكراري (حجرى ت) مىرىم.

2- Group frequency distributions are constructed for quantitative data. used when the range of values in a data set is large (continuous data). The data must be grouped into classes that are more than one unit in width, e.g., 58-64. مس داهنده داند د کام The lower class limit represents the smallest data value that can be included in a class, e.g., 58 for the class limit 58-64. x 58 - 64 g المرالاي فن لعد The upper class limit represents the largest value that can be included in the class, e.g., 64 for the class limit 58-64.

ヘロト ヘヨト ヘヨト

The class boundaries are used to separate the classes so that there are no gaps in the frequency distribution and they can be found by the following steps:

1- make sure the number of decimal digits are equal in the lower and upper limit if not add zero to the one that has less decimal digit. (if exist) e.g., 58-64.3 \rightarrow 58.0-64.3 -59.00 - 64.3

64.35

57.95

2- add zero after the last decimal digit in the lower and upper limit. e.g., $58.0-64.3 \implies 58.00-64.30$

3- subtracting 5 from the last digit in the lower class limit and adding 5 to the last digit in the upper class limit. e.g., $58.00-64.30 \Longrightarrow 57.95-64.35$

For more information see page 44-45 of Bluman's Book

Steps For Constructing a Grouped Frequency Distributions

Step 1: Determine the number of classes k.

- ار می د Chose an appropriate number. Or (5-16)
- Round output of Sturge's rule, $K = 1 + 3.33 \times log(n)$. Or
- Use the formula: $n < 2^k$.

Step 2: Determine the classes

Find the (Range) by: finding the difference between the Highest value (H) and Lowest value (L) in the data set.

R=max-min =H- L.

كتربرعه والعنات

+5 ~>

حرحن لفته

Determine the width of classes by: dividing the range(R) over the number of classes(K) and round up.

$$W = \frac{range}{\text{number of classes}} = \frac{R}{K}.$$

Determine the starting point for the first class. Ipo By select the smallest number in the data or a convenient number that is <u>smaller</u> than the lowest <u>data</u> value.

- Calculate the lower class limits. By repeatedly adding the
- فطرح ۱ حر, کر لعلوی class width to the prior class limit.
 - Calculate the upper class limits. Subtract one unit from the lower limit of the second class to get the upper limit of the first class
 - Step 2: Find the tallies.
 - Step 3: Find the frequencies from the tallies or the percentages (relative frequencies).

<u>2-1 Grouped Frequency Distributions</u>

سروط اساسيه للفكت In constructing the class limit we must take into a count the ک يجب ان کور. ۱ لفن ت مستقله following:

The classes must be mutually exclusive.

	age	
10-19	10-20	(+)
20-29	20-30	(کارز کار)
30-39	30-40	C
40-69	40-50	
10 47		

The class must be continuous. There should be no gaps in (2) يجب ان تكون العنائ مبرون فحمات the frequency distribution.

age
10-20
21-31
43-53

- The class must be exhaustive. There should be enough classes to accommodate all the data.
- the class must be equal in width. (ع) لوص the class must be equal in width.

Example 2-2:Record High Temperatures (page 47)

The following data represent the record high temperatures for each of the 50 states.

112	100	127	120	134	118	105	110	109	112
110	118	117	116	118	122	114	114	105	109
107	112	114	115	118	117	118	122	106	110
116	108	110	121	113	120	119	111	104	111
120	113	120	117	105	110	118	112	114	114

Construct a grouped frequency distribution for the data using 7 classes?

The procedure for constructing a grouped frequency distribution for numerical data follows.

àis	الحرمر دلفعليه	150	ح مز الغثة
Class	Class boundary (-)-	frequency	Class Hid Poinc
ie numbei	of classes, the	e class width:	
Width =	range(=F number of clas		= 4.9 ≈ 5.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

Example 2-2:Record High Temperatures (page 47)

The following data represent the record high temperatures for each of the 50 states.

112	100	127	120	134	118	105	110	109	112
110	118	117	116	118	122	114	114	105	109
107	112	114	115	118	117	118	122	106	110
116	108	110	121	113	120	119	111	104	111
120	113	120	117	105	110	118	112	114	114

Construct a grouped frequency distribution for the data using 7 classes? The procedure for constructing a grouped frequency distribution for numerical data follows.

Range :- اعدى - اعلى عند - اعل عنه Range = Max - Min Min = 100 Max = 134Range = 134-100 = 34 number of classes (K) - visit and and a since a classes (K) D بيكن ان يكون عدر الفنات معلى المؤال العب ان لا تكون كبر جرآ اوم عبر جرآ (٥١ - ٢) اذ لم يقطى عل بالوال منتخذم القواعد المالية K = 1+ 3.33 log(n) K = 1+3.33 log(50) = 6.6% 7

3 استخدى العلامة $n < 2^{\kappa}$ 50<2K $50 < 2^{T}$ بحوز ان ناص V 50 < 128

Class width - W sien ier 3 $W = \frac{122}{12} = \frac{R}{K} = \frac{34}{7} = \frac{4.9}{5} \approx 5$

	ا لغات	(۲) نبرا میتلونی الحبول و ترمیر
100	A 105 110	115 120
+5	+5	+5
classes	classes	والتعديل عدم لفنات حبت لا تكونا
100-105	100-104	متداخلة
105-110	105-109	م حراح ا حمر کم انعالو »
(10 - 115	WD (10-114	مراجع اللي القلي
115 - 120	115 - 119	
120 - 125	120 - 124	
125 - 130	125 - 129	
130 - 135	130 - 134	(ع) نکونہ جبوں ہوزیع لکراری

				120						
1	10	118	11/	116	118	122	114	114.2	105	109
1(07	112	114	115	118	117	118	122	106	110
1	16	108	110	121	113	120	119	111	104	111
12	20	113	120	117	105	110	118	112	114	114

Temperature (Class limits)	Tally	# of states (Frequency)
100-104		2
105-109	-##111	8
110-114	#######	18
115-119	-#####	13
120-124	-##1	7
125-129		l l
130-134		1
Total		50

ت كتابة الحدود المفالس (جدو د فاه للتخلف مر لفاؤن) (عدو د المفالس (عدو د فاه للتخلف مر لفاؤن) (ما فالجزي) (ما فالجزير) (م 4 +0.5 -0.5 5 _ 8.2 5 - 95.00 - 8.20 5 0.05 + -0.05 4.5 - 9.5 4.95 - 8.25

	1041+0.5=1045		
Temperature (Class limits)	Class Boundaries	# of states (Frequency)	7
100-104	99.5 - 104.5	2	
105-109		8	1
110-114		18	
115-119	L. L.	13	
120-124		7	7
125-129	•	1	1
130-134		1	1
Total		50	1

100

100-104 99.5-104.5	
105-109 104.5-109.5	
110-114 109.5-114.5	
115-119 114.5-119.5	
120-124 119.5-124.5	
125-129 124.5-129.5	
130-134 129.5-134.5	
M	id point aiel :5,0 (7)

Class Mid Point = lower limit + upper limit 2

100 + 104 = 102Ξ 2

104 -

V			
Temperature	Class Boundaries	Class Midpoints	(Frequency)
100-104	99.5-104.5	102	2
105-109	104.5-109.5	107	8
110-114	109.5-114.5	112	18
115-119	114.5-119.5	117	13
120-124	119.5-124.5	122	7
125-129	124.5-129.5	127	1
130-134	129.5-134.5	132	1
Total			50

Example 2-2:Record High Temperatures (page 47)

The following data represent the record high temperatures for each of the 50 states.

112	100	127	120	134	118	105	110	109	112
110	118	117	116	118	122	114	114	105	109
107	112	114	115	118	117	118	122	106	110
116	108	110	121	113	120	119	111	104	111
120	113	120	117	105	110	118	112	114	114

Construct a grouped frequency distribution for the data using 7 classes?

The procedure for constructing a grouped frequency distribution for numerical data follows.

Calculate the (Range): R = Highest value (H)- Lowest value (L)=134-100=34.

Given the number of classes, the class width:

Class Width =
$$\frac{\text{range}(=R)}{\text{number of classes}(=k)} = \frac{34}{7} = 4.9 \approx 5.$$

イロト イボト イヨト イヨト

- Determine the class limits (boundaries); a Lower limit, which is the smallest data value that can be included in the class, and an upper limit, which represents the largest data value that can be included in the class.
 - Lower limits we can consider the lowest value to be the starting point for the lowest class limits, i.e., use 100 as the lower limit of the first class then repeatedly add the class width to get the lower limit of the next six classes, i.e., 105, 110, 115, 120, 125, 130.
 - Upper limits subtract one unit from the lower limits of the second class until the seventh class to get the upper limit of the first class until the sixth class. Finally, use the largest value as the upper limit of the final class. i.e., 104,109, 114, 119, 124, 129.

Step 1:The limits of the classes are:

$$L = 100 - 104$$

$$105 - 109$$

$$l_3 = 110 - 114 = u_3$$

$$115 - 119$$

$$120 - 124$$

$$125 - 129$$

$$130 - 134 = H$$

- Step 2: create a table with three columns, the first column is for Temperature (classes), the second column for counting, and the third column is for the number(#) of states (frequencies).
- Step 3: tally data then delete column 2.

・ 同 ト ・ ヨ ト ・ ヨ ト

112	100	127	120	134	118	105	110	109	112
110	118	117	116	118	122	114	114	105	109
107	112	114	115	118	117	118	122	106	110
116	108	110	121	113	120	119	111	104	111
120	113	120	117	105	110	118	112	114	114

Temperature (Class limits)	Tally	# of states (Frequency)
100-104		
105-109	-##111	
110-114	########	
115-119	#####	
120-124	-##1	
125-129		
130-134		
Total		50

・ロト ・ 四ト ・ ヨト ・ ヨト ・

æ

The class boundaries for the grouped frequency distribution. It is used so that there are no gaps in the frequency distribution for our example is given by

 $l_i - 0.5, u_i + 0.5$

Temperature (Class limits)	Class Boundaries	# of states (Frequency)
100-104		2
105-109		8
110-114		18
115-119		13
120-124		7
125-129		1
130-134		1
Total		50

(4 周 ト 4 日 ト 4 日 ト

The class width for a class in a frequency distribution is found by one of the following:

- usually, grouped frequency distribution consist of equal class widths.
- Subtracting the lower (or upper) class limit of one class from the lower (or upper) class limit of the next class.
- Subtracting the lower (or upper) class boundary of one class from the lower (or upper) class boundary of the next class.
- Subtracting the lower class limit of one class from the upper class limit of the same class then add 1 to the last digit.
- subtracting the lower class boundary of one class from the upper class boundary of the same class.

Temperature	Class Boundaries
100-104	99.5-104.5
105-109	104.5-109.5
110-114	109.5-114.5
115-119	114.5-119.5
120-124	119.5-124.5
125-129	124.5-129.5
130-134	129.5-134.5

▲ 伊 ▶ ▲ ヨ ▶

The class midpoint

Sometime, we need to calculate the **midpoints** of each class. The class midpoint is found by adding the lower and upper limits then divide by 2 or adding the lower and upper boundaries then divide by 2.

 $\begin{array}{l} \text{class midpoint} = \frac{\text{lower limit } + \text{upper limit}}{2} \\ \text{or class midpoint} = \frac{\text{lower boundary} + \text{upper boundary}}{2} \end{array}$

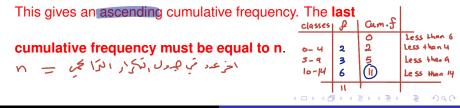
For our example:

class #*i* midpoint
$$=$$
 $\frac{l_i + u_i}{2}$

(4 間) (4 回) (4 回) (4

Temperature	Class Boundaries	Class Midpoints	(Frequency)
100-104	99.5-104.5	102	2
105-109	104.5-109.5	107	8
110-114	109.5-114.5	112	18
115-119	114.5-119.5	117	13
120-124	119.5-124.5	122	7
125-129	124.5-129.5	127	1
130-134	129.5-134.5	132	1
Total			50

・ロト ・ 四ト ・ ヨト ・ ヨト ・


æ

A cumulative frequency distribution: is a distribution that shows the

number of data values less than or equal to each upper boundary.

The values are found by adding the frequencies of the classes

less than or equal to the upper class boundary of a specific class.

Example 2-2 (page 49)

Temp. (Class)	Class boundaries	Frequency		Cumulative Frequency
			Less than 99.5	0
100 - 104	99.5 – <mark>104.5</mark>	2	Less than 104.5	2
105 – 109	104.5 – <u>109.5</u>	8	Less than 109.5	10
110 - 114	109.5 - 114.5	18 -	Less than 114.5	28
115 – 119	114.5 – <u>119.5</u>	13	Less than 119.5	<u>ч 1</u>
120 - 124	119.5 - 124.5	7	Less than 124.5	.48
125 – 129	124.5 – 129.5	1.	Less than 129.5	49
130 - 134	129.5 – 134.5	1	Less than 134.5	50

Example 2-2 (page 49)

Temp. (Class)	Class boundaries	Frequency		Cumulative Frequency	P=fx100
	Ke	ep Adding	Less than 99.5	0	0
100 - 104	99.5 - 104.5	2	Less than 104.5	<u>→</u> 2 ² / ₅₀	x100=4
105 – 109	104.5 - 109.5	8	Less than 109.5	→ 10	
110 - 114	109.5 - 114.5	18	Less than 114.5	28	
115 – 119	114.5 - 119.5	13	Less than 119.5	41	
120 - 124	119.5 - 124.5	7	Less than 124.5	48	
125 – 129	124.5 – 129.5	1	Less than 129.5	49	
130 - 134	129.5 - 134.5	1	Less than 134.5		≣ •) Q (P

If the sample size and the (cumulative) percentage of a specific class are given, then the corresponding (cumulative) frequency of this class can be calculated by $f_i = \frac{P_i}{100} \times n$

If both the (cumulative) frequency and the (cumulative) percentage of a specific class are given, then the sample size can be calculated by

$$n = \frac{f_i}{P_i} \times 100$$

	Temperature
العنيم	
F=2 P=4	100-104
1-2 1-7	105-109
-	110-114
$N = \frac{2}{4} \times 100$	115-119
H	120-124
	125-129
= 50	130-134

Nº 11 1 1 1 1 5

			6	510 1		
Temperature	Class Boundaries		Cum. Freq.	Percent		
		Less than 99.5	0			
100-104	99.5-104.5	Less than 104.5	_2	4		
105-109	104.5-109.5	Less than 109.5	10	20		
110-114	109.5-114.5	Less than 114.5	28	56		
115-119	114.5-119.5	Less than 119.5	41	82	1	
120-124	119.5-124.5	Less than 124.5	48	96	1	
125-129	124.5-129.5	Less than 129.5	49	98		
130-134	129.5-134.5	Less than 134.5	50	100		
Į¢	ې ان کمون ۵۵	ing Pi you	التكرار ال	م جود	جي من	ا خر

Relative Frequency Distribution

Relative Frequency Distribution

Used to compare datasets of different sizes.

Sum the total number of observations across all classes of the frequency distribution. اعضاوب حب بالسكن السكن السكن ولينبي مع تكوني
 Divide the frequency for each class by the total number of obs. المعترين المحترين المعترين المعترين المعترين المعترين المعترين المعترين المعترين المحترين المعترين المعترين المعترين المعترين المحترين المحترين المعترين المحترين المحت

Raw Data:	-				
Statistical T	able:	• • • •			
Relative frequency	Color	Tally	ß	Cun.f	$R \cdot f = f/n$
	Red	00000	5	5	5/25= 0.2
$\rho = c$	Blue	•••	3	8	3/25 -0.12
R = f	Green	••	2	16	
n	Orange		3	13	
~ ~ ~	Brown	0000000	8	21	
$P = \mathcal{F} \swarrow 100$	Yellow		4	25	
$P = f_{\chi} 100$			25	▶ ▲ @ ▶ ▲ ≣ ▶	<

Relative Frequency Distribution

Relative Frequency Distribution

Color	Frequency	Relative Frequency
Red	5	5/25 = .20
Blue	3	3/25 = .12
Green	2	2/25 = .08
Orange	3	3/2512
Brown	8	8/25 = .32
Yellow	4	4/2516
Sum	25	1

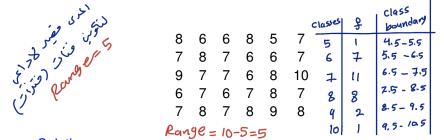
Cumulative Frequency Distribution

			_b
equency	Distribution		
Color	Frequency	Cumulative Frequency	n Z'r
Red	5	5	
Blue	3	8	1
Green	2	10	
Orange	3	13	
Brown	8	21	
Yellow	4	25	
		- 	▶ ★ 臣 ▶ ★ 臣 ▶

مجوع البكرار المنب

2-1 Ungrouped frequency distributions

Clas> Qas red 0-4 blue 5-9


・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Ungrouped frequency distributions - can be used for data that can be enumerated and when the range of values in the data set is not large. معندها ميكون هدى البيلزار عنه عيدها ميكون

Examples - number of <u>miles your instructors have to travel from</u> home to <u>campus</u>, number of girls in a 4-child family etc.

Class	Frequency
5 km	24
10 km	16
.15 km	10

Example 2-3: Hours of Sleep (page 49) The data shown represent the number of hours 30 college 4.5 students said they sleep per night. Construct and analyze a frequency distribution.

5+05

Solution:

Step 1: the Range (R)= Highestvalue(H) - Lowestvalue(L)**Step 2:** Tally the data.

Ungrouped frequency distributions

Example 2-3: Hours of Sleep (page 49)

Class limits	Tally	Frequency
5	1	1
6	-##1	7
7	H###1	11
8	###111	8
9		2
10		1

Step 3: From the class boundaries.

Class limits	Class boundaries	Frequency
5	4.5 - 5.5	1
6		7
7		11
8		8
9		2
10		· · · · · · · · · · · · · · · ·

Example 2-3: Hours of Sleep (page 49)

Step 4: The cumulative frequencies are.

Class limits	Class boundaries	Frequency		Cumulative frequency
			Less than 4.5	
5	4.5-5.5	1	Less than 5.5	1
6	5.5-6.5	7	Less than 6.5	ĝ
7	6.5-7.5	11	Less than 7.5	Ĭ
8	7.5-8.5	8	Less than 8.5	97
9	8.5-9.5	2	Less than 9.5	29
10	9.5-10.5	1	Less than 10.5	30

イロト イポト イヨト イヨト

Example 2-3: Hours of Sleep (page 49)

Class limits	Class boundaries	Frequency		Cumulative frequency
			Less than 4.5	0
5	4.5-5.5	1	Less than 5.5	1
6	5.5-6.5	7	Less than 6.5	8
7	6.5-7.5	11	Less than 7.5	19
8	7.5-8.5	8	Less than 8.5	27
9	8.5-9.5	2	Less than 9.5	29
10	9.5-10.5	1	Less than 10.5	30

see page 49-50 of Bluman's Book

イロト イヨト イヨト イヨト

æ

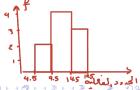
frequency distributions

	1	ىنوىتىر		فتصلق
	N <u>omina</u> l	Ordinal	Discrete	<u>Continuous</u>
Categorical <u>frequenc</u> y distribution	√	√		Class red blue
Grouped frequency distribution		0-4 5-9		(large range)
Ungrouped frequency distribution		2 3	- Naise	√ (<u>small rang</u> e) حدی مصر

< ロ > < 四 > < 回 > < 回 > < 回 > 、

æ

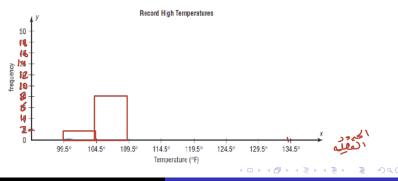
مسمع بيني One of the most Common <u>Graph</u>s in Research that <u>summariz</u>e the data


مبانات متعلق

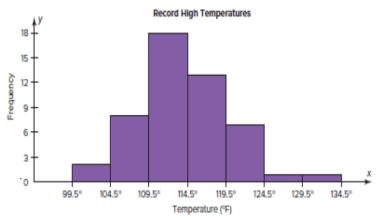
The histogram displays the <u>continuous data</u> that are organized in a <u>grouped</u> frequency distribution by using vertical bars of various heights to represent the frequencies.

To construct a histogram, we need two columns from the frequency distribution of the data, <u>class boundaries</u> (represent the x-axis) and the frequency (represent y-axis).

$$\begin{array}{c|c} class \\ boundury \\ rs - 9.5 \\ rs - 14.5 \\ 4.5 - 14.5 \\ 4.5 - 3 \\ 4.5 - 3 \\ 4.5 \\ 3 \end{array}$$


×

22 Histograms

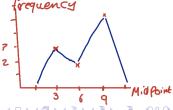

EXAMPLE 2-4 Record High Temperatures Page (57-58)

Class Boundaries	Frequency
99.5-104.5	2
104.5-109.5	8
109.5-114.5	18
114.5-119.5	13
119.5-124.5	7
124.5-129.5	1
129.5-134.5	1

EXAMPLE 2-4 Record High Temperatures Page (57-58)

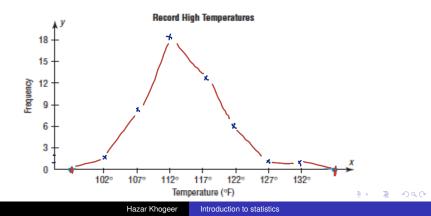
FIGURE 2-1 Histogram for Example 2-4

ヘロト ヘヨト ヘヨト ヘヨト

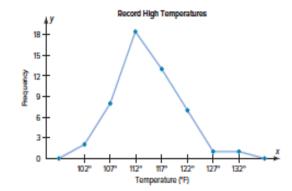

æ

The frequency polygon: بعص النتار حطر Is a graph that displays the data by using <u>lines</u> that <u>connect points</u> plotted for the <u>frequencies</u> at the <u>midpoints of the classes</u>. The frequencies are represented by the heights of the points.

To construct a frequency polygon, we need to find a new column of class midpoints and use it instead of the class boundaries in the x-axis and the frequency in y- axis.


Midpoind, frey 3 3 6 2 9 5

The Frequency Polygon


EXAMPLE 25 Record High Temperatures Page (58-59)

		~	
Temperature	Class Midpoints	(Frequency)	
100-104	102	2	Nor Midpoint
105-109	107	8	501-101-102
110-114	112	18	100 - 107 - 102
115-119	117	13	2
120-124	122	7	
125-129	127	1	1
130-134	132	1	
Total		50]

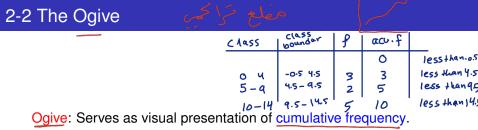

The Frequency Polygon EXAMPLE 25 Record High Temperatures Page (58-59)

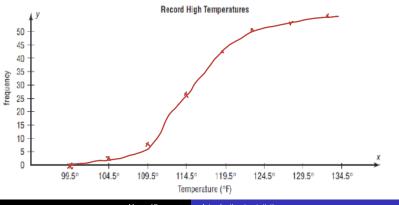
FIGURE 2-2 Frequency Polygon for Example 2-5

イロト イヨト イヨト イヨト

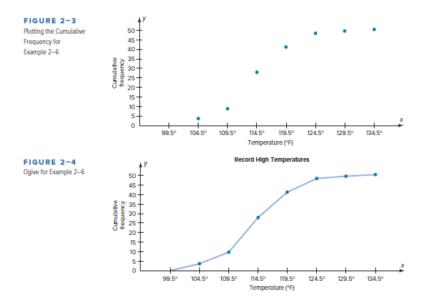
æ

Displays the <u>continuous</u> data that are organized in a grouped frequency distribution.

How to construct a Ogive for the data:


9.5 14.5

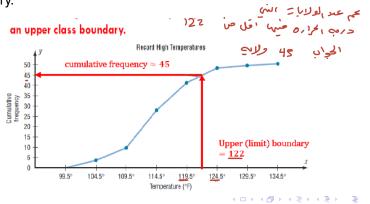
To construct a Ogive, we need to use cumulative distribution for the y-axis and the upper class boundary for the x- axis.


Example 2-6:Record High Temperatures (page 59)

Construct an ogive for the frequency distribution described in Example 2-4.

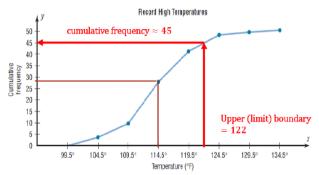
Temperature		Cum. Freq.
	Less than 99.5	0
100-104	Less than 104.5	2
105-109	Less than 109.5	10
110-114	Less than 1 <u>14.5</u>	28
115-119	Less than 119.5	41
120-124	Less than 124.5	48
125-129	Less than 129.5	49
130-134	Less than 134.5	50

Hazar Khogeer


For more information see page 59-60 of Bluman's Book

2-2 The Ogive

The main purpose of using ogive

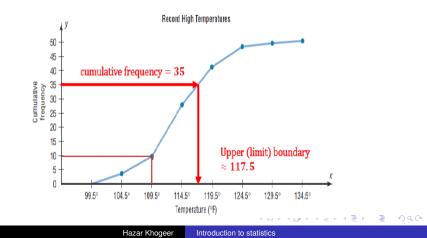

The ogive is mainly used to visually represent how many cumulative frequency (percentage) are approximately below a certain upper class boundary and vice versa.

Case1: Getting the cumulative frequency based on an upper class boundary.

How many state reached high temperatures of 114.5° F and less?

an upper class boundary.

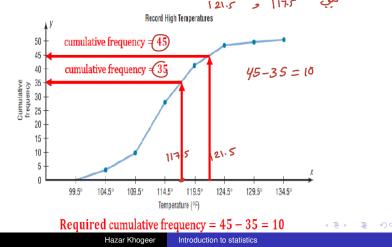
ヘロト ヘヨト ヘヨト ヘヨト


æ

2-2 The Ogive

Case 2: Getting the upper class boundary based on a cumulative frequency.

 What is the maximum temperatures that at most 10 states reached


 عا ایم درجه حرارة سمبت می لامک حا ولایات

2-2 The Ogive

Case 3: Getting the cumulative frequencies based on two upper class boundaries.

How many state reached a maximum temperatures <u>between</u> 117.5° F and 121.5° ? ? ? بعيلا ت التي درمه الج¹رم عيلا

2-1 Grouped Frequency Distributions

Example(IQ scores)

The following data set represents the IQ scores for 40 students selected randomly from Umm Al-Qura university.

60	110	121	101	91	105	93
101	103	105	75	78	90	69
85	107	99	82	95	71	83
92	90	90	115	94	100	102
138	95	80	85	84	70	77
91	99	64	80	96		

Construct a grouped frequency distribution using 8 classes? Solution:

Step 1: the Range (R)= Highestvalue(H) – Lowestvalue(L) R = 138 - 60 = 78

width=R/K, W = 78/8 \approx 9.7 (round up) W = 10.

2-1 Grouped Frequency Distributions

Example IQ scores (continued)

Step 2: Find the tallies.

Step 3: Find the frequencies from the tallies.

Class limits	Tally	Frequency
60-69		3
70-79	-##	5
80-89	-##1	7
90-99	#####	13
100-109	-##	8
110-119		2
120-129		1
130-139		1
Total		40

ヘロト ヘヨト ヘヨト ヘヨト

2-1Constructing class boundaries from class limits

Class boundaries: are connected classes that established from the disconnected class limits.

Use class limits in IQ scores example to construct class boundaries ?

Class limits	Class Boundaries	Frequency
60-69		3
70-79		5
80-89		7
90-99		13
100-109		8
110-119		2
120-129		1
130-139		1
Total		25

・ 同 ト ・ ヨ ト ・ ヨ ト

2-1Cumulative frequency distribution

Example IQ scores (continued):

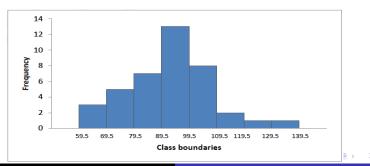
Find the cumulative frequency distribution of the data ? A cumulative frequency distribution: can be stablished by finding the sum of frequency for values less than each upper class boundary.

Class limits	Class Boundaries	Frequency	Less then	Cumulative Frequencies
			Less then 59.5	
60-69	59.5-69.5	3	Less then 69.5	
70-79	69.5-79.5	5	Less then 79.5	
80-89	79.5-89.5	7	Less then 89.5	
90-99	89.5-99.5	13	Less then 99.5	
100-109	99.5-109.5	8	Less then 109.5	
110-119	109.5-119.5	2	Less then 119.5	
120-129	119.5-129.5	1	Less then 129.5	
130-139	129.5-139.5	1	Less then 139.5	

> < 同 > < 回 > < 回 >

Example IQ scores (continued):

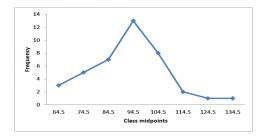
Solution:


Class limits	Class Boun.	Frequency	Less then	Cum. Freq.
			Less then 59.5	0
60-69	59.5-69.5	3	Less then 69.5	3
70-79	69.5-79.5	5	Less then 79.5	8
80-89	79.5-89.5	7	Less then 89.5	15
90-99	89.5-99.5	13	Less then 99.5	28
100-109	99.5-109.5	8	Less then 109.5	36
110-119	109.5-119.5	2	Less then 119.5	38
120-129	119.5-129.5	1	Less then 129.5	39
130-139	129.5-139.5	1	Less then 139.5	40

ヘロト 人間 ト 人間 ト 人間 トー

æ

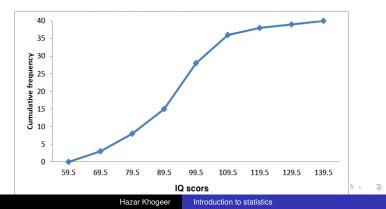
Example Construct a histogram to represent the data for the IQ scores.


Class Boundaries	Frequency
59.5-69.5	3
69.5-79.5	5
79.5-89.5	7
89.5-99.5	13
99.5-109.5	8
109.5-119.5	2
119.5-129.5	1
129.5-139.5	1

Hazar Khogeer

Example Construct a frequency polygon, to represent the data for the IQ scores example.

Class Boundaries	Midpoints	Frequency
59.5-69.5	64.5	3
69.5-79.5	74.5	5
79.5-89.5	84.5	7
89.5-99.5	94.5	13
99.5-109.5	104.5	8
109.5-119.5	114.5	2
119.5-129.5	124.5	1
129.5-139.5	134.5	1


ヘロト ヘヨト ヘヨト ヘヨト

æ

Example IQ scores (continued):

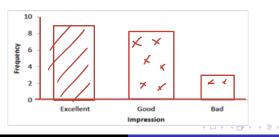
Construct a ogive, to represent the data for the IQ scores .

Less then	Cumulative Frequencies
Less then 59.5	0
Less then 69.5	3
Less then 79.5	8
Less then 89.5	15
Less then 99.5	28
Less then 109.5	36
Less then 119.5	38
Less then 129.5	39
Less then 139.5	40

58 / 73

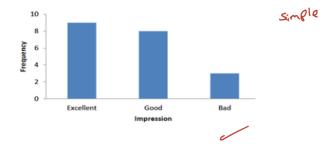
2-3 Other Types of Graphs (page 74-75)

1-Bar Graph فتطعل لاعدة


The bar chart displays the data by using vertical bars of various heights to represent the frequencies of discrete or categorical variables.

Example : Draw a bar graph to represent the impression of the visitors about the new sandwich.

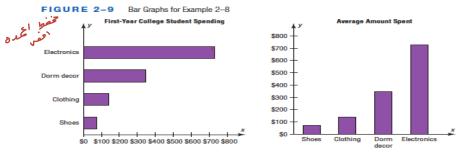
Class	Frequency
Excellent	9
Good	8
Bad	3
Total	20



< ∃⇒

1-Bar Graph

Example : Draw a bar graph to represent the impression of the visitors about the new sandwich.



ヘロト ヘヨト ヘヨト

Example 2-8 page 76 College Spending for First-Year Students The table shows the average money spent by first-year college students. Draw a horizontal and vertical bar graph for the data.

Electronics	\$728
Dorm decor	344
Clothing	141
Shoes	72

Source: The National Retail Federation.

The graphs show that first-year college students spend the most on electronic equipment.

イロト イポト イヨト イヨト

Bar graphs

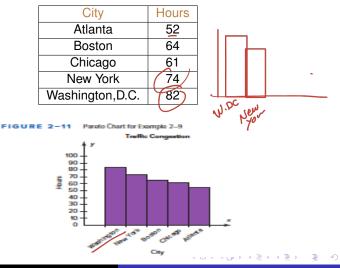
The bar graphs can also be used to compare data for two or more groups. These types of bargraphs are called compound bargraphs. Consider the following data for the number (in millions) of never married adults in the United States. که محفظ الماعدة الحرکب مقارنه ۱۷۰۰ تا تحمو عنین ۱ م اکتر

Year	Males	Females
1960	15.3	12.3
1980	24.2	20.2
2000	32.3	27.8
2010	40.2	34.0

FIGURE 2-10 Example of a Compound Bar Granh

< ロト < 同ト < ヨト < ヨト

2-Pareto chart


A pareto chart is used to represent a frequency distribution for categorical variable. The frequencies are displayed by the heights of vertical bars, which are arranged in order from highest to lowest.

イロト イポト イヨト イヨト

2-Pareto chart

Example 2-9 page 77 Traffic Congestion السعات المن دينعيني الرحام بالرخمة The data shown consist of the average number of hours that a commuter spends

The data shown consist of the average number of hours that a commuter spends in traffic congestion per year in each city. Draw and analyze a Pareto chart for the data.

a-<u>Time Series Graph</u> معطط تسلس زمنه

A time series graph represents data that occur over a specific period of time. تعرف مرم مرم فرون مرميه سرف مريات صريت فرون مرميه

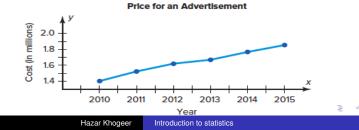
Example 2-10 page 78 Price of an Advertisement for the Academy Awards Show

The data show the average cost (in millions of dollars) of a

30-second television ad on the Academy Awards show. Draw and analyze a time series graph for the data.

Year	2010	2011	2012	2013	2014	2015
Cost	1.40	1.55	1.61	1.65	1.78	1.90

3-Time Series Graph


A time series graph represents data that occur over a specific period of time.

Example 2-10 page 78 Price of an Advertisement for the Academy Awards Show

The data show the average cost (in millions of dollars) of a 30-second television ad on the Academy Awards show. Draw and analyze a time series graph for the data.

Year	2010	2011	2012	2013	2014	2015
Cost	1.40	1.55	1.61	1.65	1.78	1.90

FIGURE 2-12 Figure for Example 2-10

محنط القراع المالي عد القط القرار 4-Pie Graph

Pie Graph is a circle that is <u>divided</u> into <u>sections</u> according to the <u>percentage of frequencies in each category</u> of the distribution. The degree of a class in a pie chart is defined as

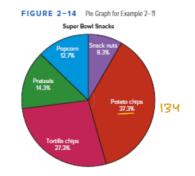
$$\frac{f}{n} \times 360^{\circ}$$
 كتربير لزاويد
بكار فاية

A (1) × (2) × (3) ×

Example 2-11 page 80 Super Bowl Snack Foods

Potato chips	$\frac{11.2}{30} \cdot 360^\circ = \underline{134}^\circ$	Snack	Pounds (frequency)]
Tortilla chips	$\frac{8.2}{30} \cdot 360^\circ = 98^\circ$	Potato chips	11.2 million	(1.2x366 30
Pretzels		Tortilla chips	8.2 million	
D	$\frac{4.3}{30} \cdot 360^\circ = 52^\circ$	Pretzels	4.3 million	
Popcorn	$\frac{3.8}{30} \cdot 360^\circ = 46^\circ$	Popcom	3.8 million	
Snack nuts	$\frac{2.5}{30} \cdot 360^\circ = 30^\circ$	Snack nuts	2.5 million	
Total	360*		Total $n = 30.0$ million	

4-Pie Graph

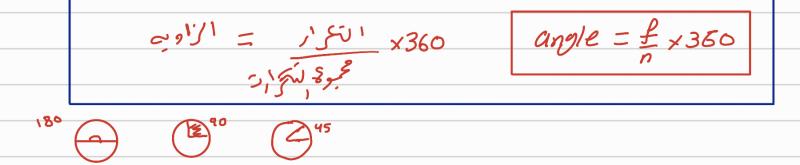

Example 2-11 page 80 Super Bowl Snack Foods

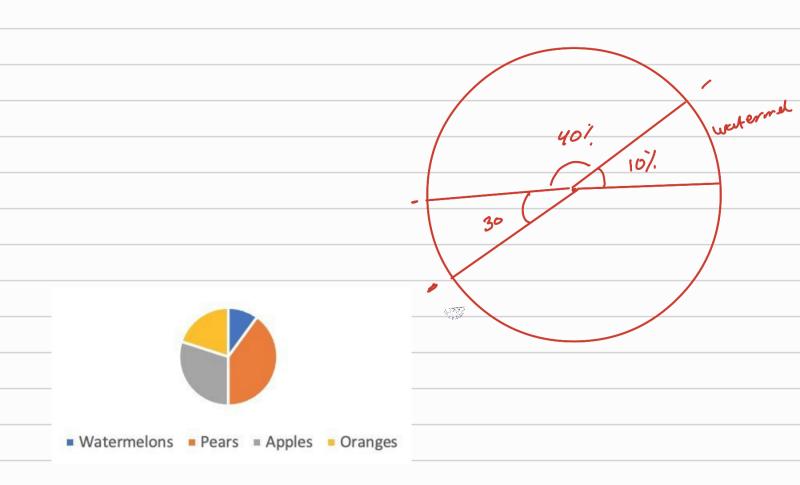
This frequency distribution shows the number of pounds of each snack food eaten during the Super Bowl. Construct a pie graph for the data.

Snack	Pounds (frequency)
Potato chips	11.2 million
Tortilla chips	8.2 million
Pretzels	4.3 million
Popcom	3.8 million
Snack nuts	2.5 million
	Total $n = 30.0$ million

Source: USA TODAY Weekend.

See page 80-81




イロト イヨト イヨト イヨト

크

⁻ Pie Graph

class	Frequency	angle	$P = P/n \times 100$
Watermelons		50 x360 = 36	10 Ż
Pears	20	20 × 360= 144	40%
Apples	15	15×360=108	307
Oranges	10	10x360 =72	20%
	n = 50	36	-

مختطط الساق والورقية

5-Stem-and-Leaf Plot

Stem and Leaf plot: is a data plot that uses part of a data value as the stem, the most significant digit (i.e. the tens), and the other part of the data value as the leaf, the less significant digits (the units), to form groups or classes.

It has the advantage over grouped frequency distribution of retaining the actual data while showing them in a graphic form.

19 18 11 25 26

Stem-and-Leaf Plot: how to construct the plot:

- Spilt each observation into two parts consisting of a stem and leaf.
- The number of leaves recorded opposite each stem is summarized under the frequency column.

Example 2-14 page 84 Out Patient Cardiograms

At an outpatient testing center, the number of cardiograms performed each day for 20 days is shown. Construct a stem and leaf plot for the data?

								-	
							0	2	
25	31	20		2	13		1	34	
14 36	<u>43</u> 32	_		7 2	<u>23</u> 44	-	2	035	
32	52				45	_	3	12	
Stem				_ea	af		ч	3	_
0	2								
1	з	4						l	
2 3	ο	35	5						
	1	2 2	2 2	2	з	6			
4		4 4							
5		27							

(4回) (1日) (日)

2-3 Stem-and-Leaf Plot

Leaf Stem 2 34 1 2 0 з з 2236 2

07 min max 57 Range = 57-2=55

-s leaf

leal

محفظ المحق والوريح بحافظ علم 1 يس ال من رهنه مح وعكن ال محقط محقط The stem and leaf plot is similar to a horizontally flipped histogram. By joining the stem and leaves, we notice that the Minimum is 02, while the Maximum is 57.

Consider the following numbers 1403 and 102.

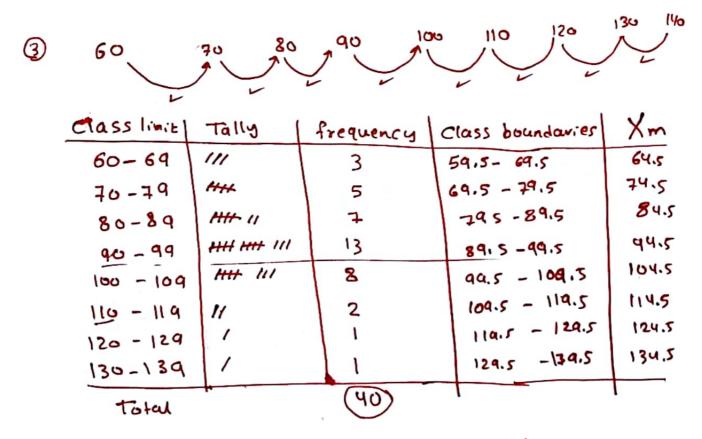
- The stem of 1403 is 140 and the leaf is 3.
- The stem of 102 is 10 and the leaf is 2. Stema

Advantage of Stem-and-Leaf Diagrams

Once a frequency distribution or histogram of continuous data is created, the raw data is lost (unless reported with the frequency distribution), however, the raw data can be retrieved from the stem-and-leaf plot. - 御下 - ヨト - ヨト

	Nominal	Ordinal	Discrete	Continuous	
Bar Chart	V	\checkmark	V		
Time Series			Independent time Dependent v discrete or co	ariable:	4.
Pie Chart	√	√			
Stem-and- leaf plot			V	√	liit.

Home work

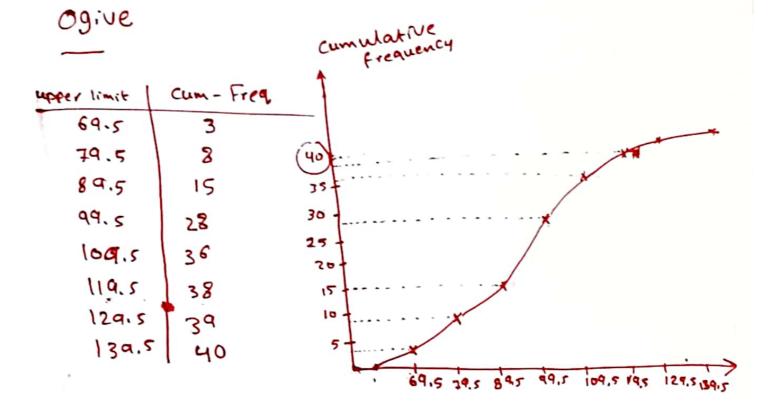

```
Exercises 2-1: page 51-52 (from 5-12, 14,16,17).
Exercises 2-2: page 67 (11)
Exercises 2-3: page 91 (11)
Chapter Quiz: page 105-106 (from 8-11, from 12-17)
```

イロト イポト イヨト イヨト

æ

مثال حفیہ 50 انٹمی، حدول متوزیع تکراری محتوی میں 8 منا ت

2 Width ($4 = \frac{1}{2} = \frac{10}{10}$ $W = \frac{R}{k} = \frac{78}{8} = 9.7 \approx \frac{10}{10}$




find the class boundaries, <u>Class midPoint</u> <u>Commulative</u> frequency distribution and represent the Data in histogram, Polygon, Ogive $X_m = \frac{60+69}{2} = 64.5$

class midpoint

2-1 Grouped Frequency Distributions

Example IQ scores (continued)

Step 2: Find the tallies.

Step 3: Find the frequencies from the tallies.

Class limits	Tally	Frequency
60-69		3
70-79	##	5
80-89	-##1 /	7
90-99	######	13
100-109	-##/11	8
110-119		2
120-129	/	1
130-139		1
Total		40

2-1 Constructing class boundaries from class limits

Class boundaries: are connected classes that established from the disconnected class limits.

Use class limits in IQ scores example to construct class boundaries ?

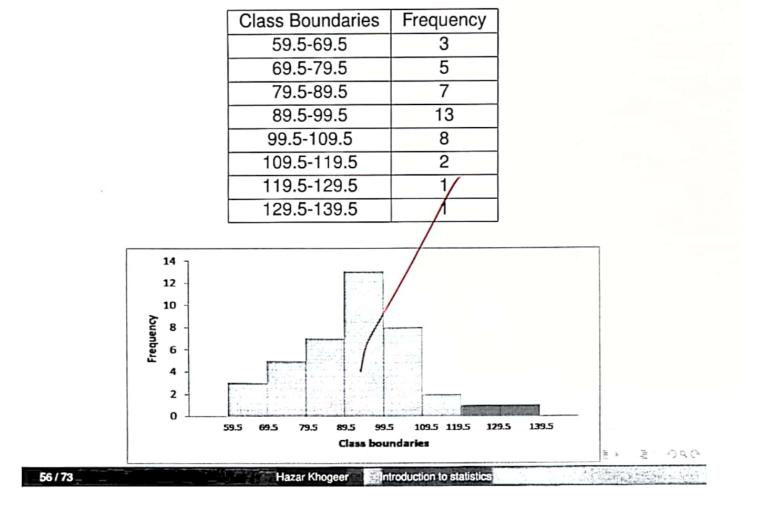
Class limits Class Boundaries Freque 60-69 3 70-79 5 80-89 7 90-99 13 100-109 8	
70-79 5 80-89 7 90-99 13 100-109 8	ncy
80-89 7 90-99 13 100-109 8	
90-99 13 100-109 8	
100-109 8	
110-119 2	
120-129 1	
130-139 1	
Total 25	

63 / 73 http://www.seconder.com/antroduction to statistics

2-1Cumulative frequency distribution

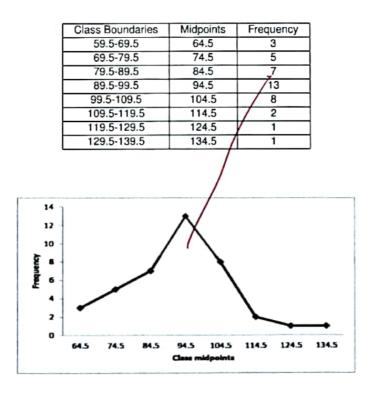
Example IQ scores (continued):

Find the cumulative frequency distribution of the data ? A cumulative frequency distribution: can be stablished by finding the sum of frequency for values less than each upper class boundary.


Class limits	Class Boundaries	Frequency	Less then	Cumulative Frequencies
			Less then 59.5	
60-69	59.5-69.5	3	Less then 69.5	
70-79	69.5-79.5	5	Less then 79.5	
80-89	79.5-89.5	7	Less then 89.5	
90-99	89.5-99.5	/19	Less then 99.5	
100-109	99.5-109.5	8	Less then 109.5	
110-119	109.5-119.5	2	Less then 119.5	
120-129	119.5-129.5	1	Less then 129.5	
130-139	129.5-139.5	1	Less then 139.5	

54/73 Hazar Khogeer Introduction to statistics
2-1 Cumulative frequency distribution

Example IQ scores (continued):


Solution:

Class limits	Class Boun.	Frequency	Less then	Cum. Freq.
			Less then 59.5	0
60-69	59.5-69.5	3	Less then 69.5	3
70-79	69.5-79.5	Б	Less then 79.5	8
80-89	79.5-89.5	7	Less then 89.5	15
90-99	89.5-99.5	13	Less then 99.5	28
100-109	99.5-109.5	8	Less then 109.5	36
110-119	109.5-119.5	2	Less then 119.5	38
120-129	119.5-129.5	1	Less then 129.5	39
130-139	129.5-139.5	1	Less then 139.5	40

Example Construct a histogram to represent the data for the IQ scores.

Example Construct a frequency polygon, to represent the data for the IQ scores example.

026-

1

• ロ • ・ (の) ・ ミ ・ ・ ミ ・

2-3 Other Types of Graphs (page 74-75)

1-Bar Graph

Example : Draw a bar graph to represent the impression of the visitors about the new sandwich.

Example 2-8 page 76 College Spending for First-Year Students The table shows the average money spent by first-year college students. Draw a horizontal and vertical bar graph for the data.

1		<u>محو</u> تى
	Bectronics	\$728
	Darm decor	344
	Clathing	141
	Shoes	72

Source: The National Retail Federation.

FIGUR \$800 \$700 \$600 \$600 \$400 \$300 Clothing \$200 \$100 \$0 Sim Clothing Electronica Darm \$0 \$100 \$200 \$300 \$400 \$500 \$600 \$700 \$800

The graphs show that first-year college students spend the most on electronic equipment.

61/73 Hazar Khogeer	Introduction to statistica
	nirroduction to statistics
	No. of the local division of

