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Timetable
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Cch21
2 Ch22 4.5 1.5
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5 Ch25 4.5 1.5
6 Ch26 3 1
7 Ch27 3 1
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Course Description

N 8/16/2024 4:38:03 PM 4

This course will provide a conceptual background in physics sufficient to enable students to take courses
that are more advanced in related fields. It covers the following: Electric charge, electric fields,

superposition, simple circuits, Ohm’s Law, and capacitors, magnetic fields and magnetic field due to
currents.



Learning Outcomes
— 1 sen02a4303PM 5

At the end of this course, the student should acquire:
1. Provide and define the fundamental properties of the electric charge, solve technical problems
associated with the electrostatic force (Coulomb force).

2. ldentify that at every point in the space surrounding a charged particle, the particle sets up an electric
field, which is a vector guantity and thus has both magnitude and direction.

3. ldentify how an electric field can be used to explain how a charged particle can exert an electrostatic
force on a second charged particle even though there is no contact between the particles.

4. Explain how a small positive test charge is used (in principle) to measure the electric field at any given
point.

5. Calculate the electric field due to distribution of charges.

6. Define electric capacitance and solve technical problems associated with capacitors of various
symmetries, capacitors in series and parallel combination, the microscopic effect of dielectric materials
on capacitance and stored energy.

7. Define electric current, current density, and solve technical problems involving DC networks of resistors,
batteries, and capacitors, Ohm’s Law, Kirchhoff’s laws, and RC charging and decay circuits.

8. Calculate the potential difference between any two points in a circuit.
9. Calculate the magnetic field due to passing of an electric current.



Marks Distribution

N 8/16/2024 4:38:03 PM

e e ow

1 Homework 10% Continued all over the course

2 Med term Exam. 20% 6t week (for male students)

10% for Lab reports.

3 Lab. 20% ,
10% final Lab exam.

4  Final exam. 50% At the end of the term

5 Total 100 %
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Introduction
- 8/16/2024 3

= The physics of electricity and magnetism was first studied by the early
Greek philosophers, who discovered that if a pieces of amber is rubbed
and then brought near bits of straw, the straw will jump to the amber.
We now know that the attraction between amber and straw is due to an
electric force. o; v ,(“‘1”;‘“

= The Greek philosophers also discovered that if a certain type of stone
(a naturally occurring magnet) is brought near bits of iron, the iron will
jump to the stone. We now know that the attraction between the

magnet and iron is due to a magnetic force.
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aiV i =" Electric Charge

. 1 8/16/2024 4

= Electric charge: (symbolized q) is the i
causes it to experience a force when placed in an electromagnetic field.
That 1s, the strength of a particle’s electrical interaction with objects
around it depends on its electric charge.

55 Charge is quantized, that is it comes in integer multiples of individual
«»+*  small units called the elementarv charge (electronic charge), (symbolized

e, about 1.602x107" C). In fact, the charge of an electron is —e, while the @:on
charge of a proton is +e. @roton
@Neutron

Depending on the number and type of the elementary charge, there are
two types of electric charge: positive charge (+¢ ) and negative charge

(_QJ- é L /; ‘), -
- An object with equal amounts of the two kinds of charge is electrically
peutral. ety

Particles with the same sign of/electrical charge reBel each other, and
particles with opposite signs attract each other. {512

The SI unit of electric charge is Coulomb (C).
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<):5 ~*Y  Coulomb’s Law
S s S
oL PPy 70 0 g1

- E
1 Coulomb’s law describes the electrostatic force (or electric force) -
r
between two charged particles. If the particles have charged(gy) and(g),

are separated by distance@ and are at rest (or moving only slowly)

relative to each other, then the force acting on particle 1 in terms of a

unit vector 7 that points along a radial axis extending through the two

particles, radially away from particle 2 is given by

AT
F=k — T = — 7
N D
P oo
o Inwhich ¢, is the permittivity of free space = 8.85 x 107'* C*/N.m?.
""‘:')-r-—” V‘U [ FPT] b
o And k is electrostatic constant (or Coulomb constant)

Charles-Augustin de Coulomb
0k =1/4me, =8.99 x 10° N.m?*/C* (14 June 1736 — 23 August 1806)

a French officer, engineer, and physicist.
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Coulomb’s Law
- 8/16/2024 6

- The direction of the force vectors depends on the signs of
thecharges_} . ’f_ﬁd\s o o ,3‘0(_.“

" w ' b."’ . W —a

7 Repulsion force: If the particles have the same sign of
charge, they ge_Ll each other (this means that the force
vector on each is dlrectlz away from the other particle).

'1 q o--’w;) 22\ g3 SeE

.‘_f_)\.?a-‘ ,a,_; - P _',,“_C__y,
o Attractive force: If the particles have gpposite signs of
charge, they attract each other (this means that the force

vector on each is directly toward the other particle)
C\y_,g.i 5 \» CI 2%



Coulomb’s Law

~  8/16/2024 7
o Multiple forces: The electrostatlc force obeys the
principle of superposition. do b3 1, P

o Suppose we have n charged particles near a chosen
particle called particle 1, then the net force on the
. . . F
particle 1 is given by the vector sum

Finet = Fip + Fi3 + Fiy + Fig + -+ Fpyy

1 Where ﬁlz is the force on particle 1 due to the 'J' °ﬂ"‘( “-9") ol "—"—4
presence of particle 2, and so on. < b P, ,J o_,_, IS s’ A

LG 2 oMo Lo\ deme =t (’-’35 ~3 B



Sample Problem 21.01

Finding the net force due to two other particles
~ § 8/16/2024 8

o (a) Two positively charged particles fixed in place on an x —axis. The charges are g; = 1.60 X 1071°C and ¢, =
3.2 x 1071°C, and the particle separation is R = 0.0200 m. What are the maémtude and direction of the
aE— " ————

electrostatic force F;, on particle 1 from particle 2? ols i
r:l z\ Y= 002 ™

1 3.2%10 i
F- K 914, = 399A10 X 6K16" % 3-2X 1 — LISXO
Y

o 002 )2 TR
C s, F = -l.IS'xme J




Sample Problem 21.01

Finding the net force due to two other particles
~ § 8/16/2024 9

= (b) The particle 3 now lies on the x —axis between particles 1 and 2. Particle 3 has charge g; = —3.20

x 1071°C and is at a distance %R from particle 1. what is the net electrostatic force ﬁlmt on particle 1

. 0 q
due to particles 2 and 3 _3.2x ot

q1 qs q> F q1 F)13 qs )

12
3 3
—R I -#P ZR_>
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- -1 q
| = 9, 9. = 3-qu\0qx\.6XIomx3-2¥‘°

) ¢ 0.02)2

..1'-4 P

Fia=-1.1Sy10 L N

A -\ 4q
K %, Az — Zaax\or h6X10 x3.2x0
2 . R
Y (3ro°2)

F,.: =+2.0605x 0 A

F;a' = F\S X \:-\Z

-29 -24 °
= (-usx\o + 2.05x\0 )L

-2Y A
O.Ax\o (

-25 ,
dx 10 (¢ N
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Sample Problem 21.01

Finding the net force due to two other particles
~ § 8/16/2024 1

o (c) The particle 4 is now included, it has charge q, = —3.20
x 10719C, is at a distance %R from particle 1, and lies on a line that

makes an angle 6 = 60° with the x —axis. What is the net
electrostatic force ﬁmet on particle 1 due to particles 2 and 4?
Solution:
- The net force ﬁl,net is the vector sum of@ and a new force Fy,

acting on particle 1 due to particle 4. Because particles 1 and 4 have
charge of opposite signs, particle 1 is attracted to particle 4. so,

force F,, on particle 1 is directed toward particle 4, at angle 6 4
= 60°.
—-19 —-19
é Fyy =47T1(g |q;||q2| (8 99 x 10°N.™ ) (1.60x10719¢)(3.20x10719C) 3,
0 (ZR) (Z) (0.0200 m)2 4

L] F14_ = 2. 05 X 10_24N
o The net force F1 net On particle 11s
O F1 net = Fiz + Fig
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Sample Problem 21.01

Finding the net force due to two other particles
~ § 8/16/2024 1

- Because the forces F;, and F;, are not directed along the same axis, we cannot sum simply by
combining their magnitudes. We use the summing in unit-vector notation

Fiq = (F14c0s 0)i + (Fy4sin6)f = (2.05 x 1072% cos 60°)i + (2.05 x 10~2#sin 60°);
= (1.025 x 1072* N)i + (1.775 x 10" 2* N)j

- Then we sum:

Finet = Fip + Fra = (=1.15 X 10724N)7 + (1.025 x 10724 N)i + (1.775 x 1072% N);j
= (=125 X 1072°N){ + (1.78 x 1072*N)j



Sample Problem 21.02

Equilibrium of two forces on a particle
~ [ 38/16/2024

o Two particles fixed in place: a particle of charge q; = +8¢ at the qrigin and a particle of charge
q, = —2q at x = L. At what point (other than infinitely far away) can a proton be placed so
that it is in equilibrium (the net force on it is zero)? Is that equilibrium stable or unstable?
[That is, if the proton is displaced, do the forces drive it back to the point of equilibrium or

drive it farther away?
2240 *

d1 q- P Fz 2

y

Fig. (b)

X d1 d> Fz R
‘—Q_' Y% ‘4_6__? X

= Fig. (d) F1
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Sample Problem 21.02

Equilibrium of two forces on a particle
~ § 8/16/2024 l

- If F, is the force on the proton due to charge g, and F, is the force on the proton due to
charge g,, then the point we seek is where

ﬁl + ﬁz — O
o1 Thus,
ﬁl — _ﬁz

o This tells us that at the point we seek, the forces acting on the proton due to the other two
particles must be of equal magnitudes, F; = F,, and that the forces must have opposite
directions.



Sample Problem 21.02

Equilibrium of two forces on a particle
~ § 8/16/2024 l

- Because a proton has a positive charge, the proton and the particle of charge g, are of the

same sign, and force F; on the proton must point away from g;.

- Also, the proton and the particle of charge g, are of opposite signs, so force F, on the proton
must point toward g,. “away from g; and toward g,” can be in opposite directions only if the

proton is located on the x —axis.

- If the proton is on the x —axis at any point between ¢, and g,, (Point P in Figure b), then F,

and F, are in the same direction and not in opposite directions.



Sample Problem 21.02

Equilibrium of two forces on a particle
~ § 38/16/2024 l

- If the proton is at any point on the x —axis to the left of g;, (Point S in Figure c), then F; and
F, are in opposite directions. But F; and F, cannot have equal magnitudes there: F; must be

greater than F,, because F; is produced by a closer charge (with lesser r) of greater

magnitude (8q versus 2q).

o Finally, if the proton is at any point on the x —axis to the right of g,, (Point R in Figure d),

then F, and F, are again opposite directions. However, because now the charge of greater

magnitude (q,) is farther away from the proton than the charge of lesser magnitude, there is

a point at which F; is equal to F,.



Sample Problem 21.02

Equilibrium of two forces on a particle
~ § 8/16/2024 l

0 Let x be the coordinate of this point, and let g, be the charge of the proton. So

Fi =F,

1 B(ap) 1 Ca)ap)
4e, x2  4me, (x —L)?

- Taking the square roots of both sides, so

(fo)=2 > x=2(x—1D

x=2x—2L = 2x—x=2L

o x = 2L



Sample Problem 21.02

Equilibrium of two forces on a particle
[ 8/16/2024 l
=2 L s oVp)
0 The equilibrium at x = 2L is unstable; that is, if the proton is displaced leftward from the

point R, then F; and F, both increase but F, increase more (because g, is closer than q,), and

a net force will drive the proton farther leftward.

o If the proton is displaced rightward, both F; and F, decrease but F, decrease more, and a net

force will then drive the proton farther rightward.

o In a stable equilibrium, if the proton is displaced slightly, it returns to the equilibrium

position.
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Conductors and Insulators o Sl s
]
o The materials are classified generally according to the ability of charge to move through them
e OJfUV‘ S o D Nl ey

_Q")‘-"ff. Conductors: are materials which charge can[move rather freely] for example: metals
(such as copper in common lamp wire), the human body, and tap water.

/ J'“} 2. Nonconductors (Insulators): are materials which charge [cannot move freely, for
example: rubber, plastic, glass, and chemically pure water.

e £ 13, Semiconductors: are materials that are intermediate between conductors and
4 . o1 . . . )
insulators, for example: silicon and germanium in computer chips.

4. Superconductors: are materials that are perfect conductors, allowing charge to move
R ,$ without any hindrance.

4:5;‘? '

>’



00R° Charge is quantized

¥ 8/16/2024 1

. . L T oAl emad 5, 0P
- Electric charge is quantized (restricted to certain values). Any

positive or negative charge q can be written as
;:t)j:ﬁ\‘ fg v S

v
f’f‘a g =\7‘le, n=4=41,4+2,43,.... Particle Symbol Charge

Electron eore” —e

- In which e, thelelementary charge,|has the approximate value

AN Proton - p +e
Lokt 0-7‘) 0

e=1602x10"1°C Neutron I

= The electron and_proton both have a charge of magnitude e.

o When a physical quantity such as charge is quantized. It is

possible, for example, to find a particle that has no charge at all, or

= S
a charge of +10e or —6e, but not a particle with a charge of 3.75e. 77 g) 7

e TS0 P



Sample Problem 21.04

Mutual electric repulsion in a nucleus
8/16/2024 2

7 The nucleus in an iron atom has a radius of about 4.0 X 10~1>m and contains 26 protons.
what is the magnitude of the repulsive electrostatic force between two of the protons that are

separately by 4.0 x 10~ °m \J.j."')'-‘JJ:" U PG, 25> Nanle

| X3
0 Solution & &
- The charge of a proton is +e, so &
Pl @) _ (8.99 x 10° N.m2/C? )(1.602 x 107°C)° = =
 4me, 1?2 (4.0 X 10~15m)?2 B Y X106 @
&
P f

= /qu:q’z- _ 3.99x\w0 K(GO?‘X‘O’M)__ \“ -3IN
‘s & x10"2) 2
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The Electric Field
0 8/16/2024 3

- For two positively charged particles, we know that there is an electrostatic

force acts on particle 1 due to the presence of particle 2, and we also know the (+)
force direction and its magnitude. d1

- We define thd electric field E|at a point, P near the charged object, as the ratio

between the electrostatic force F (acting on a small positive charge g, called a

test charge placed at P), and the value of the test charge q,, that it is the F
electric field at that point is given by @ > E \
o—+F
= F Test charge
0 E=_—- (N/O q To q, at point P

0 we calllq test chargd, because we use it to test the field.

0 Because the test charge 1s|p051tlve the two vectors are in same direction, so Cha_rged
the direction of E is the direction we measure for F. object

- The magnitude of electric field E at point Pid F/q,.
o1 The SI unit for the electric field is thejnewton per coulomb (N/C).
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Electric Field Lines

16/2024

A sphere is uniformly covered with negative charge. If we place a positive test
charge at any point near the sphere (Figure a), we find that an electrostatic force
pulls positive test charge toward the center of the sphere. So, at every point

around the sphere, an electric_field vector points radially inward toward the
sphere. WO

We can represent this electric field with 'Electric field Iines]as in Figure (b). At any
point, the direction of the field line through the point matches the direction of the

electric vector at that point. I p_".;_= st
. 7

The rules for drawing electric field lines are these:

¢ (1) At any point, the electric field vector must be tangent to the electric field

O

O

line through that point and in the same direction. & J\—C J S ets)

(2) In a plane perpendicular to the field lines, the relative density of the lines
represents the relative magnitude of t J_ﬁg].d_thm:e with greater densjty for

greater magnitude. oS! A Saop® - LU biad a5 S

Rule: Electric field lines extend awa;;fmm_p.o.sms&aha.tge (where they

originate) and tQward negative charge (where they terminate). So, a field
line extending from a positive charge must end on a negative charge.

DU 7 Yoo wPobr 35 w1 Qi ko

Figure (c)

Positive
test charge

Figure (a) <

—

Figure (b)

Electric field
lines

Electric field
lines



The Electric Field due to a Charged Particle (point charge)

I 8/16/2024 5
o To find the electric field due to a charged particle g (a point charge), we place a
positive test charge at any point near the particle, at distance r. From Coulomb’s law, S
the force on the test charge g, due to the particle with charge q is [
= 1 * =
F — q CIO 7/,\' 5 »
Atte, 12 o G-e @ o~ e
- The direction of F is directly away from the particle if g is positive (because g, i . S .
positive) and directly toward it if q is negative. °
-1 The electric field set up by the particle (at the location of the test charge) is P ¢ 3
pof_ 1 4, (charged particle)
=—= —# (charged particle
q, A4me,r? E _ k \CV\
o The magnitude at any given distance r is given by = - y 2
E= @ (charged particle) £ 4, F
E L3¢ —

- The direction of E matches that of the force on the positive test charge: directly away
from the point charge if g is positive and directly toward it if q is negative.




The Electric Field due to several Charged Particles
~ § 8/16/2024 6

o If several electric fields are set up at a given point by several charged
particles, we find the net field by placing a positive test particle, q,,

at the point and then writing out the force acting on the test charge,

F,, due to each particle, such as F,, due to particle 1. R

- Forces obey the principle of superposition, so

ﬁo = F_>01 + ﬁoz + -+ ﬁOTL

=—+—+ t+—=AE +E,++E F
4% Go o @6 L~ "

o This tells us that electric fields also obey the principle of __E_: F ¢ + f.,-\' E‘Zi_
qf——
superposition. 6. <> P VS L2V Jgs) i Ay
SRR F=E,+Ez+E3

E




Sample Problem 22.01

p—

Net electric field due to three charged particles
] )
. . 1 3
- Three particles with charges q; = +2Q,q, = —20, and gs ' \ q
= —40, each a distance d from the orlgln What net electric 30° NN, A7 50°
field E is produced at the origin? Find the net field \
at this empty point.
(a) 9
0 Answer: y
- Charges qy,q,, and g; produce electric vectors E;, E,, and Es
E;. The magnitude of Ey, E,, and E; is (o° \_ Field toward
1 20 J%ﬁ“ -
0 B = 0 Field 4
L ame, a2 IZJ - \—Fleld toward
E, = —22
JoB2 T atre, d?’ y
__1 %0 E,
EESHE ATrE, d? 5
\30°
730° *
E+E
(€)
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Sample Problem 22.01

Net electric field due to three charged particles

- 8/16/2024

- The orientations of the three electric field vectors at the origin.
Because g; is a positive charge, the field vector it produces points

directly away from it

- Because g, and g5 are both negative, the field vectors they produce
point directly toward each of them. So, the three electric fields
produced at the origin by the three charged particles are oriented as

in Figure (b).

- The electric fields E; and E, have the same direction, so their vector

sum has that direction and has the magnitude

120 120 1 4Q

E, +E, = + =
V522 " 4ne, d?2  4me, d?  4me, d?

Field away

()

Ey

\
(30° Field toward

x —

/30°_,

S SA B
F, “—Field toward

()




Sample Problem 22.01

Net electric field due to three charged particles
~ § 8/16/2024

- From Figure (c), the equal y-components of two vectors E; and

(E, + E,) cancel (one is upward and the other is downward).
Ey

= Thus, the net electric field E at the origin is in the positive \_ Field toward

130°

direction on the x —axis and has the magnitude . R0
Field away _ \{f_ .
) E, Field toward
40 6.930
E =2E;, = 2F 30° = (2 —-1(0.866) = 1

3X 3 €O (2) <4n80 d2> ( ) 41re, d? 1 =

-3
\30° s

730° *

()



A Point Charge in an Electric Field
N\ AN s

~  8/16/2024 1
o Suppose a charged particle is in an electric field set up by other stationary or slowly moving
charges. E ~
- The electrostatic force acts on the particle is given by 2q, »
.) L 0-9,-0) >
ceZ 100 ! |7 =qE] — -

o In which g is the charge of the particle (including its sign) and E is the electric field that other

At
-1 The field acting on the particle is called the external field. S, L

charges have produced at the location of the particle.

- The electrostatic force F acting on a charged particle located in an external electric field E

has the direction of E if the charge q of the partlcle is positive and has the opposite direction
= 1fI is negatiye [-’Nf" a,-)_erva LY 7 s APV ING A VEV_ PR
e,*" \S \-’\U“S'I’} -\ﬁ?_)ﬂo CUPS RN MG NoS J\“SI OQ“
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The Electric Field of Continuous Charge Distributions
Nt s gty

____§ 8/16/2024 . 1
o>l _J) oo LS
1 For an extended object, the charge is often conveyed in terms of a charge density rather than
the total charge. A= ..G.f:: C/m e i e ainatin e oW N L Jyaols A

- For a line of charge, we use the linear charge densityld)(the charge per unit length), with the
-~ - O > U amT S\
SI unit of (C_/_?:I_”l)..f’/r"\"s Dse 208 2

= o= A0 9 FPNoa" s .
0 For a charged surfaces, we use the surface charge density|g|(the charge f)er unit aréa), with

the ST unit of (C/m?). 6= Q - Sl 52 a2 SN o CS 6
A
o For a charged volumes, we use the volume charge density|p [(the charge per unit volume),

with the SI unit of (C/m?). U oLl SHCS i P
=Q - c/m?

Vi




The Electric Field of Continuous Charge Distributions

Electric field at a distance z from the center of a charged ring
[ 8/16/2024 1

o The electric field due to a line of charge:

oA thin ring of radius R with a uniform distribution of positive dE
charge along its circumference. It is made of plastic, which means
that the charge is fixed in place.

¢

- The ring is surrounded by a pattern of electric field lines, but we
calculate at point_P that on the central axis at a distance z from
the center point. -

- In terms of the linear charge density 4, we have
dqg = Ads

- This charge element sets up the differential electric field dE at P,
at distance r from the element. The field element due to the
charge element is

1 dg 1 Ads 1 Ads

dE = = =
Ate, r?  4Ame, r? 4me, (R? + z2)
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The Electric Field of Continuous Charge Distributions

Electric field at a distance z from the center of a charged ring
[ 8/16/2024 1

- Now, consider the charge element on the opposite side of the

ring, it too contributes the field magnitude dE but the field :
vector leans at angle 6 in the opposite direction from the vector dr. E

from our first charge element, as in the following figure.

- Thus the two perpendicular components cancel. All around the

ring, this cancelation occurs for every charge element and its ® | o
. '
symmetric partner on the opposite side of the ring, so we can — d £5! n® OI}/

neglect all the perpendicular components.

- All the remaining components are in the positive direction of

the z-axis.



The Electric Field of Continuous Charge Distributions

Electric field at a distance z from the center of a charged ring

~ F 8/16/2024 1

o The direction of the net electric field at P is directly away from the ring. The net electric field

at P is

1 Ads 1 Ads z zA
0 k= de cost = f47ts (R2+42z2) £05 9 = f47te (R2+zz); = f4n£o (R2+22)3/2 ds
S - ~—

—— zA 2TTR ——% 1 z(q/27mR) 1 qz

S 4me, (R2+422)3/2 fO d  4me, (R2+ZZ)3/2 (2rR) = 4me, (R2+2z2)3/2 (2rR) ¥ 4me,(R2+22)3/2

- Where the line charge density 1 is

2TtR

o If the charge on the ring is negative, instead of positive as we have assumed, the magnitude of

the field at P is still as given, but the electric field vector points toward the ring instead of away

from it.

e S\ S
0 Ifz» R, so N)L/M \sﬁ-\ \ D @
0 z2+ R? = 72 \JO’S N93J N




The Electric Field of Continuous Charge Distributions

Electric field at a distance z from the center of a charged ring
[ 8/16/2024 1

1 Then

1 qz 1 gqz 1 gq >@_
ame, (z2)3/2  4mey, z3 | 4me, z2 Z

o The electric field at a point at the center of the ring — that is, for z = 0.

I

= qz =
0 E= Are,(R2+22)3/2 0

o This is a reasonable result because if we were to place a test charge at the center of the ring, there
would be no net electrostatic force acting on it; the force due to any element of the ring would be
canceled by the force due to the element on the opposite side of the ring. If the force at the center

of the ring were zero, the electric field there would also have to be zero.
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Introduction
-~ 1 8/16/2024

o In this chapter we discuss an important relationship between charge
and electric field that allows us, in certain symmetric situations, to
find the electric field of an extended charged object with a few lines

of algebra. The relationship is called Gauss’ law, which was
developed by German mathematician and physicist Carl Friedrich

Gauss (1777- 1855)\,,"&/’\'-4-4-‘- o dio e sy p L vy oy

o Figure 1 shows a partlcle with charge +0Q that is surrounding by an
imaginary concentric sphere (said to be a Gaussian surface).

- At points on the sphere, the electric field vectors have a magnitude
(E = kQ/r?) and point radially away from the particle (because it is
positively Eharged). The electric field lines are also outward and
have a moderate density.

- We say that the field vectors and the field lines pierce &35 the
surface.

N
\f =

Carl Friedrich Gauss
(1777-1855)

— Gaussian
| surface

R A
\\\\\ T - k
==
A N\
L
v Ny

[ Field line

Figure 1
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- Figure 2 is similar except that the enclosed particle has charge +2Q. Because

the enclosed charge now is twice as much, the magnitude of the field vectors

piercing outward through the same Gaussian surface is/twicé as much as in

Figure 1, and the density of the field lines is also twice as much.

0 Gauss’ law relates the electric field at points on a closed Gaussian surface to _
the net charge enclosed by that surface. t)/‘ \I\Sd‘w S ,}39‘\‘, s S < e “ Figure 2
L oS pragZavrel

- Example: let us consider a particle that is enclosed by the same spherical

Gaussian surface as shown in Figure 3.

o What is the amount and sign of the enclosed charge?

0 From the inward piercing, we see immediately that the charge must negative, —0.5¢

= From the fact that the density of field lines is half that of Figure 1, we also see
that the charge must be (0.5 Q). - ‘a_'-.b \:_,_._p )
05Q e\ S fN Y dl gal | Yot SLges Sy Figures



34 B2 ElectricFlux @ Weme

~  8/16/2024 5
7 The electric flux through a surface is the number of electric field lines penetrating
normally the surface. o
o The electric field can be expressed in terms of the number of electric field lines per i—| ' E
unit area, that is the electric field is the density of the electric lines. ,
- For a Flat Surface with area A, exposed to a Uniform Field, E normal to the surface, A
then the electric flux is given by
® =FA 1
Since the electric field is a vector, then we can write the last equation as

D = Eed < - <
= Le = \_Sitaxlo
Where 4 is the area vector of the surface.
If the field is not normal but making an angle 8 with the normal as in Figure (a) in AA,\ y

which the electric field vectors E piercing a small square patch with area A4, only the =
x-component (the normal component with magnitude E, = E cos 8) as in Figure (b) . /\
will be considered to calculate the electric flux. The y-component does not piercing

the surface and does not contribute in Gauss’ law. (¢

o The amount of electric field piercing the patch is defined to be the electric flux A® /

LV CEE R

of |

through it:

rp=(Ecos)ad  =EDBA Cos 0
E oA A (b)
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Electric Flux
- 8/16/2024 , 6

Y

1 In other words: We define an area vector ég that is _perEEndicular to the patch /

and that has a magnitude equal to the area A4 of the patch (Figure c). So /

AD = E.AA F——- »
. . = AA

-1 The (}2’5 product gives us the component of E that is parallel to A4 and thus e

piercing the patch. i
o1 The total flux ® through the surface is N TR TS ) (c)
0 d=YAd=YE.A

——

- If the area of the patch is very small dA, then the element of the flux through an E

area element dA is given by ; A A
5 do = E.dA = -

—_— -~ \, O .' f_,..._’

o1 The total flux ® through the surface is

c1>=Jdc1>=JE.d/T



N
o

Electric Flux

8/16/2024

Directions: o\ = ¥ )

We use an area vector A_{T that is perpendicular to a patch and always

draw it pointing outward from the surface (away from the interior).

Then if a field vector pierces outward, so the area vector and electric
Se——

field vector are in the same direction, the angle is & = 0 and cos 6 = 1.
Thus, the dot product E. A4 (the electric flux) is positive. E A

Conversely, if a field vector pierces jnward, the angle is §_=180° and
cos & = —1. Thus, the dot product E.AA (the electric flux) is negative.

If a field vector skims the surface (no piercing), the electric flux is zero

90° = 0). -
(because cos ) 2o )
An inward piercing field is negative flux. An outward piercing field is

positive. A skimming field is zero flux.

bl

%

E.Adis positive
Flux is positive

E
%

E.Adis negative
Flux is negative



Sample Problem 23.01

Flux through a closed cylinder, uniform field
~ § 8/16/2024

o A Gaussian surface in the form of a closed cylinder of radius R

is shown in the following Figure. It lies in a uniform electric
field E with the cylinder’s central axis (along the length of the

o o

cylinder) parallel to the field. What is the net flux ® of thL_"g_é%_,—
electric field through the cylinder? ———— | R
= US Y e \—=
5 Solution: 3V s2~! e "

Y

o The cylinder’s surface can be divided into three surfaces: the

circular end a, the cylindrical surface b, and the circular end
o

1 The electric flux is

¢=3€§.d,4=f E.d/f+j E.d/f+j B dA
a b C

Y
| |
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Sample Problem 23.01

Flux through a closed cylinder, uniform field
~ § 8/16/2024 9

-1 The flux through the circular end a is

j E.dA = fE(cos 180°) dA = —Ef dA = —EA = —E(nR?)

a

o The flux through the circular end c is

J E.dA = jE(cos 0°) dA = Ej dA = EA = E(nR?)
C —

o The flux through the cylindrical surface b is

f E.dA = jE(cos 90°) dA = 0
b ——

c./;"‘”’”

o So, the net flux is N o )
®=—-FEA+0+EA=0 u«"dﬂ)aﬂ” oY —

o The net flux is zero because the field lines that represent the electric field all pass entirely

through the Gaussian surface, from the left to the right. 7- ? o\



Sample Problem 23.02

Flux through a closed cube, nonuniform field
~ § 8/16/2024 10

A nonuniform electric field given by E = 3.0x { + 4.0 j pierces the Gaussian cube shown in the
following Figure. (E is in newtons per coulomb and x is in meters). What is the electric flux
through the right face, the left face, and the top face?

The y component The element area vector
y Gaussian 'S a cor?stant_ dA (for a patch element) is
surface E, 4A  perpendicular to the surface
1

b 7 /7 " and outward.

|

| =

|PJ =
|

|

dA .
<} > dA
Ll =
- 2 The x component ¥—
x=1.0m x=3%0m depends on the dA
value of x. z
(a) (b)

- Right face: An area vector 4 is always perpendicular to its surface and always points away from

the interior of a Gaussian surface. Thus, the vector dA for any patch element on the right face of
the cube must point in the positive direction of the x- axis.

dA = dA1
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Sample Problem 23.02

Flux through a closed cube, nonuniform field
~ [ 38/16/2024

o So, the flux ®.. through the r1§ ht face is

EdA J]).)—J((BOx)(dA) +(/ﬂ-}€dﬂ7"7 f(_@

= _3:__ij dA = 3.0 j(.B.O) dA =9.0A=9.0(4.0) =36 N.m?/C

11

o where the are A = 4.0 m? of the right face.

The y component of the

y field skims the surface Y The y component of the
E_'i and glqure.s no ﬂux The f|9|d Skims the Surface
dot product is just zero. E and gives no flux. The

E A ’ E, dot product is just zero.

= o \‘

The x component of the The x component of the
1 field pierces the surface field pierces the surface

and gives outward flux. (d) and gives inward flux. The
/5 (c) The dot product is positive. dot product is negative.

X

[Rd



Sample Problem 23.02

Flux through a closed cube, nonuniform field
~ § 8/16/2024 12

o Left face: We repeat this procedure for the left face. However, two factors change.
Welement area vector dA points in the negative direction of the x-axis, and thus d4 =

(2) On the left face, x = 1.0 m. The flux @, through the left face is

P, = jﬁ dA = j(3.0xi+4.0j).(:_¢_,_4_i) = —j((S.Ox)(dA) i1+ (4.W

— —-j(B.Ox dA +/65 =—3.0 f x dA = —3.0 f(1.0) dA=-3.0A=-3.0(40) = —12 N.m?/C




Sample Problem 23.02

Flux through a closed cube, nonuniform field
~ § 8/16/2024 iE

- Top face: d4 points in the positive direction of the y-axis, so, d4 = dA j. The flux @, is

P, = Jr E.dA = f(3.0 xi+40).(dA)) = j((3.0x)(dA) i.j + (4.0)(dA)].j) = J(o + 4.0 dA)

Jf dA = 4.0 (4.0) = 16 N.m2%/C

and gives outward flux. —— and gives no flux. The

The y component of the _ The x component of the
field pierces the surface y E, field skims the surface
The dot product is positive. i dot product is just zero.

X

(£)




Gauss’ Law

8/16/2024

0 Gauss’ law relates the net flux ® of an electric field through a
closed sur

! ﬂ fge (a Gaussian surface) to the net charge g.,,. that
is enclosed by that surface. " . -
D= A
0P = Gonc %’ \ PS IN

From the definition of flux, we can also write Gauss’ law as

(Gauss'law)

E f E.dA = Qenc (Gauss'law)

The net charge g, is the algebraic sum of all the enclosed
positive and negative charges, and it can be positive,
negative, or zero. We include the sign, rather than just use
the magnitude of the enclosed charge, because the sign tells
us: if q.,. 1s positive, the net flux is outward; if g,,. is
negative, the net flux is inward.

14

- -

________

E. at a distance 7 from point charge q is
1 ¢q

Ate, 1?

The electric flux through a sphere of

radius r is given by

E =

1 q

o = fE.dA:fMSOrz.dA

_ q 1 g 2

 4me, 1?2 4dme, 12 (4mr%)
q

=— =

€o

&, jé E.dA = g, (Gauss'law)
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Gauss’ law
- 8/16/2024 15

o In applying Gauss’ law, we draw a suitable surface (called Gaussian

surface) surrounding the charge, then we begin to apply Gauss’ law to

calculate the electric field.

o The electric field due to a charge outside the Gaussian surface
contributes zero net flux through the surface because as many field lines

[ —————]

due to that charge enter the surface as leave it.

o Let us apply these ideas to the following Figure, which shows two
particles, with charges equal in magnitude but opposite in sign, and the
field lines describing the electric fields the particles set up in the

surrounding space.

o Four Gaussian surfaces are also shown in cross section.
[ — RN




Gauss’ law
- 8/16/2024 16

o Surface S1. The electric field is outward for all points on this surface. So, the flux of the
[ =0 — \

electric field through this surface is positive, and so is the net charge within the surface \ |
- T e .|', ’."
is positive (g.,.), as Gauss’ law requires. \ | / , /

Smm— e — ~ \ ‘

o Surface S2. The electric field is jgpward for all points on this surface. So, the flux of the

electric field through this surface is negative and so is the enclosed charge, as Gauss’law 75— e -
[ immmatity ” y \
requires. l}‘\'
.‘| \I
o Surface S3. this surface encloses no charge and thus g.,. = 0. Gauss’ law requires that / ' \ | |\ O\
- _ ‘l i !
the net flux of the electric field through this surface be zero. That is reasonable because a‘ ? B ! ? Y |
. . . . . . | a' ,“ / /
all the field lines pass entirely through the surface, entering it at the top and leaving at | [/ /
P ———— P ——— ‘ 'l f
the bottorn. 5, \ X /
\\_;_\ /2 ' S__;—-_'_/
- Surface S4. This surface encloses no net charge, because the enclosed positive and s \Z_ y-
= — | E—
negative charges have equal magnitudes. Gauss’ law requires that the pet flux of the / l\
electric field through this surface be zero. That is reasonable because there are as many / \
. . . . . // / [ i ! S
field lines leaving surface S4 as entering it. ‘ S
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Sample Problem 23.03

Using Gauss’ law to find the electric field
1 8/16/2024 17

- What is the net charge enclosed by the Gaussian cube in Example 27?

o Solution:

-1 We need to know the flux through all six faces of the cube. We know the flux through the
right face (®, =36 N.m*/C), the left face (&, = =32 N.m*/C), and the top face (¥, =
16 N.m2/C).

- For the bottom face, our calculation is like that of the top face except that the element area

vector is directed downward along the y-axis, the flux is (&, = —16 N.m?/C).
D




Sample Problem 23.03

Using Gauss’ law to find the electric field
1 8/16/2024 18

= For the front face we have dA = dA k, and for the back face, dA = —dAk. When we take the
dot product of the given electric field E = 3.0x i + 4.0 j with either of these expressions for
dA, so there is no flux through those faces.

= The total flux through the six sides of the cube is

®=(36-12+16—16+0+0) N.m2/C =24 N.m?/C

o The enclosed charge is:
-~ 4
e Genc = €,® = (8.85 x 1072 C?/Nm?)(24 N.m?/C) = 2.1 x 107*%C




Sample Problem 23.04

Using Gauss’ law to find the enclosed charge
~ § 8/16/2024 19

- The figure shows three situations in which a Gaussian cube sits in an electric field. The
arrows and the values indicate the directions of the field lines and the magnitudes (in
N.m?/C) of the flux through the six sides of each cube. (the lighter arrows are for the hidden
faces). In which situation does the cube enclose (a) a positive net charge, (b) a negative net
charge, and (c) zero net charge?

248+ S-F X5
Y N




Applying Gauss’ Law: Planar Symmetry

¥ 8/16/2024 20

o (1) Nonconducting Sheet:

o A portion of a thin, infinite, nonconduction sheet with a uniform (positive) surface charge density o. A
sheet of thin plastic wrap, uniformly charged on one side, can serve as a simple model. Let us find the

electric field E a distance r in front of the sheet.

o A useful Gaussian surface is a closed cylinder with end caps of area A, arranged to pierce the sheet and
hence to the end caps.

t
¥ ¥ 4
& - + o
¥ ¥ 5 g - H -
+ & F % " : + »~— Gaussian B - I o N
—4 ¥ + t + surface A M A
Bt A A EA = 1 —="EA
G } + . E : —E
AR . There is flux only - -
" i through the = -

¥ ¥ two end faces. (b)
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Applying Gauss’ Law: Planar Symmetry
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- From symmetry, E must be perpendicular to the sheet and hence to the end caps. Since the charge is

positive, E is directed away from the sheet, and thus the electric field lines pierce the two Gaussian end
caps in an outward direction. Because the field lines do not pierce the curved surface, there is no flux
through this portion of the Gaussian surface.

o1 Thus,

0 € PE.dA = qene
0 & (EA+ EA) =0A
0 2&,EA = 0A

1 The electric field is

o
0 FE =—
2¢€,



Applying Gauss’ Law: Planar Symmetry
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o (2) Two Conducting Plates ‘oo ’Sa:‘—a—\ \

o A cross section of a thin, infinite conducting plate with excess

positive charge is shown in following Figure (a). We know that £ "¢ 17 7

th%s excess charge lie on the surface of the plate: Since the plate is )

thin and very large, we can assume that essentially all the excess 7 7

charge is on the two large faces of the plate. <t F 4§ —D
o If there is no external field to force the positive charge into some - . -

particular distribution, it will spread out on the two faces with a

uniform surface charge density of magnitude o;. o

- We know that just outside the plate this charge sets up an electric
field of magnitude E, = g,/¢,. Because the excess charge is
positive, the field is directed away from the plate.

(a)
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Applying Gauss’ Law: Planar Symmetry
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- Figure (b) shows an identical plate with excess negative charge
having the same magnitude of surface charge density ;. The only RN Pt

difference is that now the electric field is directed toward the RN ] S
== <

plate.
s &
E <

o Suppose we arrange for the plates of Figures (a) and (b) to be
close to each other and parallel (Figure c). Since the plates are 9

. . . e LIS
conductors, when we bring them into this arrangement, the o -}
excess charge on one plate attracts the excess charge on the other ‘ -
plate, anc.l all.the excess charge moves onto the inner faces of the E-o| E b [ -0
plates as in Figure (c). p -

] ’

(c)



Applying Gauss’ Law: Planar Symmetry
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- With twice as much charge now on each inner face, the
new surface charge density (o) on each inner face is twice
. . o . _ “Gl

0;. Thus, the electric field at any point between the plates o
has the magnitude

o
Il
ds o e s oo

\’a
o= oo

\"‘l' lm v|°

o This field is directed away from the positively charged
plate and toward the negatively charged plate. Since no =
excess charge is left on the outer faces, the electric field to :
the left and right of the plates is zero.

(o

m\oi ro



Sample Problem 23.06
Gauss’ law and an upward streamer in a lightning storm
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- Portions of two large, parallel, non conducting sheets, each with a O (+ff o
fixed uniform charge on one “Side are shown in the following - -
Figure. The magnitudes of the surface charge densities are o) = i —~
6.8 uC {mz for the positively charged sheet and 0( - =43uC /m? 4 =
for the negatively charged sheet. 5 =
7 Find the electric field E (a) to the left of the sheets (b) between the I :
sheets, and (c) to the right of the sheets. E n
o Solution: (a) + C

o At any point, the electric field §(+) due to the positive sheet is
directed away from the sheet and has the magnitude

- [ = | -
o 6.8 X 10—6 C m2 E+ # E+) E+)
E(yy == = ¢ = 3.84 x 10°N/C —fF —> 57—
2¢,  (2)(8.85 x 10-12C2/Nm?) o I s [l °
- + =
o Similarly, at any point, the electric field E_y due to the negative L B N R
sheet is directed toward that sheet and has the magnitude o I 7 S
po =20 __A3XW0TE/m ) 10sngc —H — BT
)™ 26, T (2)(8.85 x 10-12€2/Nm2) ~ / (5 v _



E.= 6 O'(,"I_ O
-6 + E., E+
= 6.3X10 . e [ —>p N —
24 885410 — I E-—™ d.l
] H & B €«
= 3.3unpw/c —» [k el €_
) il 4+
- —
S
Er= Y3xi" H -
2%8.85x16" s =
s
= 2.u3 x10 M/e
_b,,_\t:,f
E - E+ < E -

Eg = 384xio + 2.u5xb

= 43 X6 WNc
ot
a::..NJ;\I\s

te =F, =G.8u_2.u3)x0 -

= .4 X’O;N/C

Eg = fz\ﬂw‘ EA = je-.r"-



Sample Problem 23.06

Gauss’ law and an upward streamer in a lightning storm
~ § 8/16/2024 26

o Figure (b) shows that the fields set up by the sheets to the left of the
sheets (L), between them (B), and to their right (R).

o The resultant fields in these three regions follow from the
superposition principle. To the left, the field magnitude is

E, = E.y—E_y=384x10°N/C—243 x10°N/C = 1.4x10° N/C

o Because E(,) is larger than E(_), the net electric field E, in this region
is directed to the left, as in Figure (c) shows. To the rigﬁf of the sheets, —
the net electric field has the same magnitude but is directed to the G
right, as in Figure (c) shows. Between the sheets, the two fields add
and we have

+FFFFFFFFFFFFF+
v

i Waninminleiminmimll !

(¢)
Ep = E(4yy + E(_y = 3.84 X 105 N/C + 2.43 X 105N /C = 6.3 X 105 N/C
o The electric field E is directed to the right.
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Electric Potential and Electric Potential Energy
i Wy [ =

L : ' : ' ; S S T T
o The electric potential V, at a point, is the work done required to move a unit C

charge from infinity (where the potential is zero) to that point against the field. -
+
o In Figure (a), we want to find the potential energy U associated with a positive Test charge g, { 5
test charge q, located at point P, in the electric field of a charged rod. at point P { .
o First, we need a reference configuration for which U = 0. A reasonable choice is + 4+
for the test charge to be infinitely far from the rod, because then there is no + 4+ Charged
interaction with the rod. object
o Next, we bring the test charge in from infinity to point P to form the
configuration in Figure (a). We calculate the work done by the electric force on The rod sets up an
the test charge. electric potential,
- The potential energy of the final configuration is given by which determines
O @: (potential energy) the potential energy.
o where I is the work done by the electric force. Let’s use the notation W, to
emphasize that the test charge is brought in from infinity. (a)

o The work and the potential energy can be positive or negative depending on the
sign of the rod’s charge. —

NS 012 1 Tz Uratda!
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Electric Potential and Electric Potential Energy

8/16/2024

Next, we define the electric potential VV at P in terms of the work

done by the electric force and the resulting potential energy:

p=-—to_Y (electric potential)

do do

That is, the electric potential is the amount of electric potential
energy per unit chargﬂ when a positive test charge is brought in
from infinity.

The rod sets up this potential V at P regardless of whether the test
charge happens to be there (Figure b).

The potential V is a scalar quantity (because there is no direction
associated with potential energy or charge) and can be positive or
negative (because potential energy and charge have signs).

4

l)

S +
Electric potental + +
Vat point P r

+ +
+ +
T




Electric Potential and Electric Potential Energy

~  8/16/2024 5
o electric potential energy = (particle’s charge)(electric potential) /_'l’ "
0 U=qV AF X B\ = o_-.:‘{nf"je:?L'ﬂJ‘ Electric potential + +
- where g can be positive or negative. Vat point P T 5
+ +
: . .y o
0 Units: The SI unit for potential is Joule/coulomb, or volt 4
0 1wvolt = 1 Joule/coulomb, or . -
J = Norn Wos— (NS sl ol v—reows>
0 1V=2= S5 ()

o Since 1N =J/m, we can now switch the unit for electric field

vz &

from newtons per coulomb (N /C) to volt per meter (V/m) 6\,
N_Jm__ ] _J/iC_V
I:]C_C_Cm_m_m ur-'VQ/

. 0P 9 T\l | |
VRIS 0 LE e ey v ST 1 (2D Tao s 2



Motion Through an Electric Field
1 8/16/2024 6

7 (1) Change in Electrical Potential: if we move from an initial point i to a final point f in the
electric Tield of a charged object, the electric potential changes by

oAV =V -V, PV SOV SN SRR AN GOV IR VDY S i

o If we move a particle with charge g from i to f, the potential energy of the system changes by
0 AU =qAV = q(V; — 1) IDV= 9V -qU = DU

o The change can be positive or negative, depending on the signs of, and@ It can also be
if there is no change in potential from i to f (the points have the same value of
potential).

0 Because the electric force is conservative, the change in potential energy AU between i and f
is the same for all paths between those points (it is path independent).

(/\.}',\sS MK L)) ~F127 3
e sP LS o F DU, —
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2 P 51 00 el S
o
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d,P - U =\ ,\‘/t
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il ol she B SUP gl O N %
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Motion Throuih an Electric Field
1 8/16/2024 7

0 (2) Work by the Field: we can relate the potential energy change AU to the work W done by
the electric force as the particle moves from ‘i, to f by applying the general relation for a
conservative force: \/\j

0 W = 5AU (work, conservative force) ..,p\S a )| S 0 5‘5'4,
o Next, we can relate that work to the change in the potential -
0 W=-AU=—-qAVH—qVr—-V)
o The W is the work done on the particle by the electric field (because it, of course, produces

the force). The work can be positive, negative, or zero. Because AU between any two points in
path independent, so is the work W done by the field. e P, L>0a
__a

P' 6—-"‘® :?)l.d.;; a @ ~
T T /"‘55"5"“"
4 ® 9@ 1 < @ J!’/IJ&U‘
;4:‘_ _ ;b,)\o:l'/&.l_.' : dto_?.).\d'a&&_;
OSﬂS‘Gﬂ-—'"‘:‘T" ﬂ)j} ast'p:.;_.\;. q,_sj\ aL’_‘_-.)\)\,




Motion Throuih an Electric Field
1 8/16/2024 8

o (3) Conservation of Energy: If a charged particle moves through an electric field with no
force acting on it other than the electric force due to the field, then the mechanical energy is
conserved. Let us assume that we can assign the electric potential energy to the particle
alone. Then we can write the conservation of mechanical energy of the particle that moves

from point i to point f as
L] Ui+Ki — Uf+Kf
0 Kp—K; =U; — Up = —(Up = Uy)

0 AK = =AU

o1 So, the work done

0 W=AK =—-AU=—qAV =—q(V; — 1)

A :
— L. _JP
ke Uc kp Up
U‘_‘."o;}s co Loz 1o 1ol 4aF
o‘.lﬂ.:c':gl .,C...-'-C:N[;
"'C.u -UC )= f< - k<
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Motion Through an Electric Field

Y 4 -
(4) Work by an Applied Force: If some force in addition to the electric force acts on the
particle, we say that the additional force is an applied force or external force, which is often
attributed to an external aqentp’ P —~2,Co 2,5 '

(initial energy) + (work by applied force) = (final energy)
= £

Ut Wopp="Urtir Cl"/w \
Kf_Ki=Ui_Uf+Wapp=_(Uf_Ui)+Wapp E ' |
AK = =AU + Wypp, = —q AV + Wy, U"—‘(w‘-/\ *.a-a\.»-nxo.&b\ ._-wwt..h_)

The work by the applied force can be positive, negative, or zero, and thus the energy of the
system can increase, decrease, or remain the same.

In special case, where the particle is stationary before and after the move, the kinetic energy
are zero, and we have

@/app=qAV) (for Ki=Kf) "Jpﬂs-/) Q-:QJ_J\
DK = o




PofspP ¥ PE = BU = —9( V3 -\¢)
Lirgipr 2R 17 DK = = DU Wagp
= = & (Vg -V )+ Wapp

"\\.
2u.0l o ] =
AU = =\ O
W:FOCJ-;-_ E&Coge \E
\v:'oUIc
— %E___d Cos O O= 180
- E d
— 9Ed ces/ld
- -9rd
= - (l-é)(lo—\q) CISOJ(SZo)
= \.2 xlo—‘ud'
_ 1y
A= -W= =12X(6 DV=BU_ | 53" _7.5¢0
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Work and potential energy in an electric field
~ § 8/16/2024 10

o Electrons are continually being knocked out of air
molecules in the atmosphere by cosmic-ray particles
coming in from space. Once, released, each electron A

experiences an electric force_F due to the electric field £
that is produced in the atmosphere by charged particles —
already on Earth. Near Earth’s surface the electric field has F F d
the magnitude E = 150 N/C and is directed downward. :

- What is the change in the electric potential energy dlJ of a
released electron when the electric force cause it to move

vertically upward through a distance d = 520 m? Through
what potential change does the electron move?

eTSZm

WV
JSM]C
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Work and potential energy in an electric field

8/16/2024 11
The work done by a constant force F on a particle undergoing a displacement d is
W=F.d= (qﬁ) .d = qEd cos 6 = (—1.6 x 107° €)(150 N/C)(520 m)(cos 180°) = 1.2 X
10—14]
Where the 6 is the angle between the directions of E and d. The field E is directed downward
and the displacement is directed d upward.
AU = =W = —1.2x 10714
This result tell us that during the 520 m ascent, the electric potential energy of the electron
decrease by 1.2 X 10™*J. The change in electric potential is
_ —14
Ay =28 = 220 J _ 755 10%V = 75 kV
q —~1.6x10~19¢C
This tells us that the electric force does work to move the electron to a hiﬁgller potential.

U\Sg\ﬂfll}g Q)f:"q)-/'u‘ (;';ﬂ-) \_‘ggﬁ _4/|:.::7 & N5\



Equipotential Surfaces and The Electric Field
~ § 8/16/2024 12

o A adjacent points that have the same electric potential form an equipotential surface,
which can be either an imaginary surface or a real, physical surface.

o No net work W is done on a charge particle by an electric field with the particle moves
between two points i and f on the same equipotential surface.

I Equal work is done along S \AJJ -[._? ¥

[\ these paths between the

5'0 V { f ’. ! <
| | same surfaces. Ca_e)
N_(_)_kais’g_Q_n.e_a.long | ,.,' '|‘ 4/)5 ) L-(./‘
7 o Y this pathonan
equipotential surface.

- -

No work is done along this path —/
that returns to the same surface.




Calculating the Potential from the Field

~  8/16/2024 13
-1 We can calculate the potential difference between any two Wo o'o a2
points i and f in an electric field if we know the electric field
vector E all along any path connecting those points. Path Field line ~

- We find the work done on a positive test charge by the field L/
as the charge moves from i to f, and then use the Eq. \

0 W=-AU=—qAV =—q (V- V)

- Consider an arbitrary electric field, represented by the field
lines in the following Figure, and a positive test charge g,
that moves along the path shown from point i to point f. At

any point on the path, an electric force F acts on the charge
as it moves through a differential displacement ds. = ,
5 P Wo-W= 9 (Ve- V)

- -

0 F=gq,E

- The differential work dW done on a particle by a force F _
during a displacement ds is given by d W = Fo 0’ >

o dW =F.d§ = q,E.d3 W _._.jdw;-fcgEedg
)
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0

W = %J E.ds
Calculating the Potential from the Field

8/16/2024 14
The total work W done on the particle by the field is - C?/ ( l{}' - \((‘) = c1 J = A<
w=[aw =g, [ E.d3 _

-.-W=—qo(vf—vl-)=qoff§.d§ {/{5\/ -:Vﬁ—\fc,’ :-—jEch-ﬁ')
« (V=) =—f'E.a3
Thus, the potential difference (Vy — V;) between two points i and f in an electric field is equal

to the negative of the line integral of E. d§ from i to f.

- Because the electric force is conservative, so all paths yield the same result.
o We can calculate the difference in potential between any two points in the field, if we set

potential V; = 0, then \ - =

This equation gives us the potential V_at any point f in the electric field relative to the zero
potential at point i. If we let point i be at infinity, then this equation gives us the potential V
at any point f relative to the zero potential at infinity.
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Calculating the Potential from the Field Z
~ § 8/16/2024 15
o Uniform Field: /L:u-? QLS O _9:1:: DS el WD

o If we start at point i on an equipotential line with potential V; and move to point f on an
equipotential line with a lower potential V. The separation between the two equipotential
lines is Ax.

f f f 7
Vf—Vi=—JE,d§=—JEdscos@=—JEdscosO=—Ede
i i i i

i /—Paih O, AV = 'Ejdscf(&

P

HYIRIRRY e (RARARIRYRIRIRINY

r
\'. —é_é
e Field line
—_ —3

Higher | e
potential | L | \\ Lower S

:_ Ax _: potential

| |

G=0 Cos0=I



Calculating the Potential from the Field
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- The integral is simply an instruction for us to add all the displacement element ds from i to
f, it is the length Ax. Thus, we can write the change in potential V; — V; in this uniform field

as

AV = (V; = V;) = —E Ax

0 If we move in the direction of the field by distance Ax, the potentlal decreases. In the

opposite direction, it increases. J_,_J ~\; Y o, -]"’_9-99 ¢ S FARER

NS ¥ s I g\ b 9..L_p 1< _»
o1 The electric field vector points from higher potential tmd lower potential.

Q\/::-E AR

,,f\r’co«ﬂ Q@‘-—\Dﬁ—‘} ‘ =
UM-}N}LS\Q\Q—“ — P;




Sample Problem 24.02

Finding the potential change from the electric field

- 8/16/2024

17

7 Two points i and f in a uniform electric field E are shown in the following Figure. The points
lie on the same electric field line (not shown) and are separated by a distance d. Find the
potential difference Vy — V; by moving a positive test charge g, from i to f along the path

shown, which is parallel to the field direction.

The electric field points from
higher potential to lower potential.

£ ) -
& Higher potential ,

ftef

' | a
Y v [y

Lower potential

(a)

The field is perpendicular to this ic path,
so there is no change in the potential.

T o L ds c

45°

I_':'-l
fi’ﬂa/
(E;-

57| |E _
The field has a component

(b)

/ along this cf path, so there
is a change in the potential.

UAREN

b\f:ﬂE DX
e Woa> £



The electric field points from The field is perpendicular to this ic path,
higher potential to lower potential. so there is no change in the potential.

. !Higher potential

d
" 551 |E
? ’ = l The field has a component
= lf along this cf path, so there

is a change in the potential.

A) QUL | Yao= 22 o) 70 o= P S
b\f:: - £ OL

b) LJ:&D)&T&Q—Q\] NI
2 evo
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AEERVE s
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14
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Sample Problem 24.02

Finding the potential change from the electric field
~ § 8/16/2024 18

o Solution:

o In Figure (a): The potential difference is
Vi—V,=—E.d=—Ed
0 In Figure (b): the potential difference V; — V; by moving the positive test charge q, from i to f
along the path icf as shown in Figure (b) is:

- We have to lines ic and c¢f. At all points along line ic, the displacement ds of the test charge

is perpendicular to E. Thus, the angle 6 between E and d3 is 90° and the dot product E. d§ =
0. So, the points i and c are at the same potential V. — V; = 0. The points are on the same
equipotential surface, which is perpendicular to the electric field lines.

o For line cf, we have 8 = 459, so

= —Ed

£ f !
Ve —V; = _f E.dS = —j E(cos 45°) ds = —E(cos 45°) j ds = —E(cos45°) ——
. . c sin 45

- The integral in the equation is just the length of line c. This is the same result we obtained in

(a).
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Potential due to a Charged Particle

[ 8/16/2024 19
- Consider a point P at distance R from a fixed particle of positive _ .

. . . To find the potential of
charge g, we imagine that we move a positive test charge q, from the charged particle,
point P to infinity. Because the path we take does not matter, we we move this test charge
take a line that extends radially from the fixed particle through P 4 R
to infinity. o 1N

= - q“@_x
0 E.ds = E cos@ ds

- The electric field E is directly radially outward from the fixed
particle. So, the differential displacement ds of the test particle P

along its path has the same direction as E. f

o Because the path is radial, let us write ds as dr, and substituting R
the limits R and . So, \

0 Ve=Vi=—J, Edr

0 Next, we set V/; =0 (at ) and V; =V (at R). Then, for the
magnitude of the electric field at the site of the test charge, so

B S




Potential due to a Charged Particle

I 8/16/2024 )
= q
jR . 47‘[80 R r2 Amre, |1 [ ] 4n€0
o Solving for V and switching R to r, we have the electric potential V due to a particle of charge
at any radial distance r from the particle. = R A

o A positively charged particle produces a positive electric potential. A negatively charged
particle produces a negative electric potential.

0 Potential due to a Group of Charged Particles:

o The net electric potential at a point due to a group of charged particles with the help of the
superposition principle. We calculate separately the potential resulting from each charge at
the given point. Then we sum the potentials. Thus, for n charges, the net potential is

1 ql
47‘[80 — 7

n
V —_ Vi
=1
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Vg = = L | N
Yn¢. y "
s { 6
@ 2 m A VH_:': ‘CT)")QO é‘_)i_).-(-’—
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Sample Problem 24.03
Net potential of several charged particles

~  8/16/2024 21

o What is the electric potential at point P, located at

the center of the square of charged particles shown _ :a q . TN .

in the following Figure? FETE 1 o
o The distance d is 1.3m and the charges are ~ J2d%={39 ]
0 g =+12nC, q, = —24nC Y2z d T /
0 qs = 431nC, g, =+17nC =& (D $ !
o Solution: zodlam ©

_y4 y G, T2, 9, G
- V_Zi=1vl_4nso(r+r+r+r) V___L
7 The sum of the charges is 17E
= - q
_ _ 9, _
= glaizzof‘?qfr%_(lz 24431 +17)x107°C= (/- _| [lz_zq+3|+|ﬂxl0
qgrne ¥

-q
\/ = axiot [|2_2q+31+\7-]x‘9 =350V
o.alq



Sample Problem 24.03

Net potential of several charged particles
~ § 8/16/2024 22

o The distance r is
0 2r)*=d?*+d* = 4r? =2d?

d 1.3
O .r——2—5—0.919m
o1 Thus,
8.99x10% Nm2C~2%)(36x10~°C
0 V=Z?=1Vi= = (&+2+£+%)=( 10 m J3ex1 )zBSOV
4TEL \ T r T r 0.919m —

o Close to any of the three positively charged particles in Figure (a), the potential has very large
positive values. Close to the single negative charge, the potential has very large negative
values. Therefore, there must be points within the square that have the same intermediate
potential as that at point P.

o The curve in Figure (b) shows the intersection of the plane of the figure with the
equipotential surface that contains point P




Sample Problem 24.04

Potential is not a vector, orientation is irrelevant
~ F 8/16/2024 23

0 12 electrons (of charge —e) are equally spaced and fixed
around a circle of radius R, as shown in the following

. . ———s : orientation is irrelevant.
Figure. Relative to V = 0 at infinity, what are the electric / \
due to these electrons? \ /

potential and electric field at the center C of the circle
o Solution:

ﬂ
- The electric potential V is the algebraic sum of the /
electric potentials contributed by all the electrons.

Potential is a scalar and

Because electric potential is a scalar, the orientations of @ T & .

the electro.ns fio not meTtter. . Go— S F)V G BV A\ |
- The electric field at C is a vector quantity and thus the — L B

orientation of the electrons is important. — \‘_"c‘ = _ze -

- Because the electrons all have the same negative charge e E."Q“' as '
— e and are all the same dista R
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Sample Problem 24.04
Potential is not a vector, orientation is irrelevant

Because the symmetry of the arrangement in Figure (a), the electric field vector at C due to
any given electron is canceled by the field vector due to the electron that is diametrically
o) ite it. So, at C

E=0 e o Xy 20 pS 5 LAY TSy
e electrons are moved along the circle until they are nonuniformly spaced over a@
arc (Figure b). At C, find the electric potential and describe the electric field.

Because the distance between C and each electron is unchanged and orientation is irrelevant,

the potential is still given by \ - | RPN
— yn n ql _ m BRIV NS Q\gLS Y OGS0 N,% A
V=2isVi=—2Xi Oy s

4-77.'80 TEp R

The electric field is no longer zero, however, because the arrangement is no longer
symmetric. A net field is now directed toward the charge distribution.

E+0
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Calculating the Field From the Potential
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o Suppose that a positive test charge g, moves through a displacement ds from one
equipotential surface to the adjacent surface, as shown in the following Figure.

- The work that the electric field does on the test charge during the move is —q,dV. The work
done by the electric field may be written as the scalar product

(qOE).d:? or q,E(cos 8)ds

o Equating these two expressions for the work yields
—q,dV = q,E(cos8)ds

E cosf = v -
cosf = —— RS

- Since (E cos 6) is the component of E in the direction of d3, so
av — Two

S ds cqunpmep[ml
surfaces

oo\ S\ D q,.,.){, P s = g‘WUJOW\



Calculating the Field From the Potential
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- The component of E in any direction is the negative of the rate at which the electric potential
changes with distance in that direction.

0 If we take the s axis to be the x, y, and z axes, we find that the x, y, and z components of E at

any point are: _
v~ 4 (E oV L \
¥ ox’ Y 9y’ Z 0z

0 So, if we know the function V (x, y, z), we can find the components of E at any point by taking
partial derivatives. E S\lWSras= Lg o V G2 S i
- The component of electric field is zero in any direction parallel to the equipotential surfaces
because there is no change in potential along the surfaces.
S0y J s

,p;),?') J)\__/:’ Zﬂ‘é«/ o(:fll_} ﬂp&r-ﬁ\-—/ 5_:5(11'\/
/né\..‘}—/f""'}




Sample Problem 24.05

Finding the field from the potential
~ § 8/16/2024 27

- The electrical potential at any point on the central axis of a uniformly
charged disk is given by
o
v=oro(J22+R2-2)
2¢,

- Starting with this expression, derive an expression for the electric field at
any point on the axis of the disk.

o Solution:

1 We want the electric field E as a function of distance z along the axis of

the disk. For any value of z, the direction of E must be along that axis —-
because the disk has circular symmetry about that axis. Thus, we want

the component E, of E in the direction of z.

go=-2 _i<i(m_z)) - —%%((ZZ — R2)"? —z)

0z 0z \ 2¢,

o 1/2 o Z
— 280 ( (Z — 2) .(22) — 1) 2, (1 — - R2>




=J7t:a
V= _é'.fz“-rE"
2
E="2Y E- {2V E--2Y
b= 4 ay az
Zeve Zevro
2 s (s L.h;_’-:a.a:/ Gowe Jingt
_gv - &
az 2¢
E -.-&f -6 ] -t]
eZ %€ QJZ’-rP"

‘F,_’-—?‘ . 7

A= L Y% *as”
e v, U= L Z?a +99s + qz‘b]
T ad v ar\s el 5 G
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Electric Potential Energy of a System of Charged Particles

¥ 8/16/2024 28

- We want to calculate the potential energy of a system of two charged particles.

- Our starting point is to examine the work we must do (as an external agent) to bring together

two charged particles that are initially infinitely far apart and that end up each other and
stationary.

o If the two particles have the same gign of charge, we must fight against their mutual
repulsion. Our work is positive and results in a positive potential energy for the final two-

ticl tem. e’ -
particle system “_:QMN-J:“W' @ @

o If the two particles have oqusite signs of charge, our work is negative and results in a
. . — “
negative potential energy for the system.
f

B gh &) A @



Electric Potential Energy of a System of Charged Particles
- 1 8/16/2024 29

o For a two-particle system as in the Figure, where particle 1 (with positive charge g,) and
particle 2 (with positive charge g,) have separation r. Although both particles are positively
charged, our result will apply also to situations where they are both negatively charged or
have different signs. g ¢

®- r -

- We start with particle 2 fixed in place and particle 1 infinitely far away, with an initial
potential energy U; for the two-particle system. Next we bring particle 1 to its final position,
and then the system’s potential energy is Ur. Our work changes the system’s potential energy

by

AU =Up = U; = (Vs = V)
- The initial potential energy is U; = 0 because the particles are in the reference configuration.
The two potentials (V¢ and V;) are due to particle 2 and are given by

1
v=—122 ¢~
dte, T
P e




Electric Potential Energy of a System of Charged Particles

¥ 8/16/2024 30

o This tells us that when particle 1 is initially at distance r = oo, the potential at its location is
V; = 0. when we move it to the final position at distance r, the potential at its location is

1 4

Ve =
! dte, T

- The final configuration has a potential energy of

1 q,
Ur—U; =Usr—0 = Ve —V:) = — =0
f i f CI1(f z) q1(4neor )
d1492
U =
dte, 1T

o The signs of the two charges are included. If the two charges have the same sign, U is
positive. If they have OEROSIte signs, U is negative.



Electric Potential Energy of a System of Charged Particles
~ § 8/16/2024 31

o If we next bring in a third particle, with charge g3, we repeat our calculation, starting with
particle 3 at an infinite distance and then bringing it to a final position at distance r3; from
particle 1 and distance r3, from particle 2. -

o At the final position, the potentiall/t at the location of particle 3 is the algebraic sum of the
potential V; due to particle 1 and the potential V, of particle 2. so,

B
o The total potential energy of a_system of parficles is the sum of the potential energies for
every pair of particles in the system.
® P - ] - - .
P S L) £ S AN, SN
/ /J : .




Sample Problem 24.06

Potential energy of a system of three charged particles
~ § 8/16/2024 32

- Three charged particles held in fixed positions by forces
that are not shown in the following Figure. What is the
electric potential energy U of this system of charges? Energy is associated

Assume that d =12cm and that g, = +q, g, = —4q, / \ with each pair of
and g3 = +2q,inwhichq =150nC. d=o-\2 / parncles

o Solution:

o Starting with one of charges, say q,, in place and the others
at infinity. Then we bring another one, say g,, in from
infinity and put it in place. So, the potential energy U;,
associated with the pair of charges q; and g, is

1 Q1QZ
4drte,,

- L [0, 49y L
78 d

"! 1 ]

Ui =




Sample Problem 24.06

Potential energy of a system of three charged particles
~ § 8/16/2024 33

- Then, we bring the last charge g5 in from infinity and put it in place. The work that we must
do in this last step is equal to the sum of the work we must do to bring g; near g, and the
work we must do to bring it near q,.

_ _ 1 qiq3 1 q3q3
0 Wiz + Wyz = Ujz + Upz = pr— + pr—

- The total potential energy U of the three-charge system is the sum of the potential energies
associated with the three pairs of charges.

I (CI1512 q193 CIZCI3)

ae,\d T d | d

U=U12+U13+U23=

10g*
drte,d

= e d ((+)(—4q) + (+q)(+2q) + (—4q)(+2q)) =

(8.99 x 10° Nm2C~2)(10)(150 x 1079 ¢)* .
_ =—17%x10"2) =17 mJ

0.12m & ] alad
U= ;L,,q_j-[m; 1244943 ] = 49001 [ﬂ( W)+ £ (2q) 12 (29)]

41re,d (—49% +2¢* —8¢%) = -
(0]

= 8.2 xloq_éiﬁ [-q -84 ZJQS'amo‘q)‘ =o.ol¥ §
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Capacitance

- 8/16/2024

o The basic elements of any capacitor are shown in Figure 1
(two 1solated conductors of anv shape, no matter what their
geometry, flat or not, we call these conductors plates).

..:,.-:,\)’.&\ (‘_}_-"_0-\-]‘)'-3 Ty
o In Figure (a), a|_£)arallel —plate capacitor| made up of two
plates of area A separated by a distance d. The charges on

the facing plate surfaces have the same magnitude g but
opposite signs.

(-.-U\o-‘

o In Figure (b), as the field 1iy{gs show, the electric field due to
the charged plates is uniform in the central region between
the plates. The field is not uniform at the edges of the plates,
as indicated by the “fringing” of the field lines there.

f . )
L Bottom side of
top plate has

charge +¢q

(a)

Electric field lines

T

> — Top side of

bottom

plate has
charge —¢q

—t q

(b)

Figure 1
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w"/”"” Capacitance C CF-"A})

When a capacitor is charged, its plates have charges of equal magnitudes but opposite signs:
Qnd @ We refer to the charge of a capacitor as being g, the absolute value of these
charges on the plates. (Note that g is not the net charge on the capacitor, which is zero).

L
Because the plates are conductors, they are equlpotentlanurfaces all points on a plate are at

the same electric potentlal Moreover, there is a potential difference between the two plates.

The charge@and the potential difference@for a capacitor are proportional to each other;
that is, +

q=CV - SV

—

The proportionality constant C is called the capacitance of the capacitor.

The value of capacitance depends only on the geometry of the plates and not on their charge
or potential difference.

__Q/ Mf[&_f;cxu_:{:——’\c_p-’om_.:-mﬂ.’)\

— -————-_--

W-w(/lé_){_u\us Aa_m_s, T



Capacitance

I 8/16/2024 5
o The capacitance is a measure of how much charge must be put on the plates to produce a

certain potential difference between them: the greater the capacitance, the more charge is
required. r\}] a2 f Ly T Z=Co\ S V' US U&S

0 The SI unit of capacitance is coulomb per volt (C/V), this unit occurs so often that it is given

a special name, the farad (F):

\X\Oﬂ(

e

- The farad is a very large unit, submultiples of the farad, such as the microfarad (1 uF =

1farad =1F =1 Coulomb per Volt=1C/V

107°F) and the picofarad (1 pF = 10~1?F), are more convenient units in practice.




The Capacitance of A parallel-Plate Capacitor
~ § 8/16/2024 6

For a parallel-plate capacitor, we assume, that the plates are so large and

so close together . For this case the capacitance is given by

- T =
=g=£OEA=€0A [L __L\
74 Ed d d A Gaussian
l surface
- Where: _ . =
@L_L( P‘C.\:?u\x %6 ;—C\A:J[;-'&f\.,g\duf
o Ais the plate area , and o eoL_£| mZ) < =ratlrot
- ':'-' - llll(.‘gl‘lll_l()ll
d is the plate separat] !
o d is the plate separation. _. :
— p p A , A Le . ,‘ ;wg lk.n—c' C - _L!"’Jp
o That is the capacitance depend only on geometrical factors- namely, the c- € A /
plate area A and the plate separation d. ol

—

A SV, L Moo al ool OS5 R EY
- Note that C increases as we increase area A or decrease separation d. :

S ——
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The Capacitance of A Cylindrical Capacitor

- That is the capacitance of a cylindrical capacitor, like that

cylinders of radii a and b. We assume that L> b , and Total chargf +¢ Total fharg(‘
each plate contains a charge of magnitude q.
- The capacitance is C - __CQ -2t g oL
Vv
b
L In(s
C = 1_ 2TTE
Ty °In(b/a)

of a parallel-plate capacitor, depends only on geometrical
factors, in this case the length L and the two radii b and a.

{'_ - Gaussian
Path of surface

obe— )""‘\H 3 _)(QX‘ WS | = integration
/ : - - a- ™ ] . -
—F Ly (s e % 0P sk SMF

Joﬂa (..;-d

-



The Capacitance of A Spherical Capacitor

spherical shells, of radii a and b. the capacitance of a Total charge +4 Total charge —¢
spherical capacitor is

q ab
C:V:4T[EO h— g

b A S0l ges € as )\ ndiu€ C il

- That is The capacitance of a spherical capacitor depends

only on geometrical factors, in this case the two radii of
spherical shells b and a.

Gaussian

Cc: _E_Z - LIIT €°( - b ) inlt):g[_{lrla(t)ifon urtace
V O -0




Sample Problem 25.01

Charging the plates in a parallel-plate capacitor
~ § 8/16/2024 9

o In the following Figure, switch S is closed to connect the uncharged capacitor of capacitance C = 0.25 uF to
the battery of potential difference V = 12 V. The lower capacitor plate has thickness L = 0.50 ¢m and face area
A=20x10"*m?, and it consists of copper, in which the density of conduction electrons is n = 8.49 x
10%° electrons/m®. From what depth d within the plate (Figure b) must electrons move to the plate face as
the capacitor becomes charged? —

@ o Solution: ¢ -\ 7 ), > S
\f
’.._.'—C KV \ + + .- 7 a0
q/ -—6 —"?’;‘—a'igﬂﬁ: L | d | r' ‘ :r
=0:25X10 x12 e C . T () =\ orovb s
-6
-6 - N=%_ sxw© =
-— -
4 = 3x0 C » _— =

12
M=1.8F x10 elecCtron

- Because the lower plate is connected to the negative terminal of the battery, conduction electrons move up to
the face of the plate. The total charge magnitude that collects there is n - N

q=CV=(025%10"°F)(12V) =3.0x 1076 C

-
"~ . —_—

. N
an *
-
- _-'
.




Sample Problem 25.01

Charging the plates in a parallel-plate capacitor
~ § 8/16/2024 10

= The number N of conduction electrons that come up to the face is

g 3.0x10°°C 13
N = 2" 16x10-19¢C - 1.873 x 10*° electrons

- These electrons come from a volume that is the product of the face area A and the depth d. Thus, from
the density of conduction electrons (number per volume), we can write @ Culs L3 .0

N =
n=—
Ad n= M __
Ad
o The depth d is od.—=— N
N (1.873 x 10*2 electrons) — AN
d= =11x1072m=11pm

An (2.0 X 10~* m?2)(8.49 x 1028 electrons/m3) 3
d= [.83x0 =

2 X100~ 74 §iygx10

= [.] X'lb-':nzq.‘.' b p7
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Capacitors in Parallel and in Series
~ § 8/16/2024 11

o Capacitors in Parallel
I

o Figure (a) shows an electric circuit in which three capacitors are
connected in parallel to battery B. “in parallel” means that the
capacitors are directly wired together at one plate and directly wired
together at the other plate, and the same potential difference V is
applied across the two groups of wired-together plates. Thus, each
capacitor has the same potential difference V, which produces charge

Terminal
\[r_

on the capacitor. [ +q4 + o +q,
The charge on each actual capacitor is B V | i V = 1 V jt V
g, =CV, q,=C,V, and g5 = C3V J’ —93|Cq —92|C ~N|C,

The total charge on the parallel combination is
q=q1+q2+q3=(C;+C+C3)V

The equivalent capacitance, with the same total charge q and applied -CV
potential difference V is q'l |

(a) “Terminal

U CEEE R




Capacitors in Parallel and in Series

[ 8/16/2024 12
o Capacitors in Series

o Figure a shows three capacitors connected in series to battery B. “in series” means that the capacitors
are wired serially, one after the other, and that a potential difference V is applied across the two ends of
the series. The potential differences that exist across the capacitors in series produce identical charges
g on them.

— [ Terminal
- The potential difference of each actual capacitor is T
q q q =4
V, =—, Vo, =—, d V;=— ] _=——_
G T PTG Ql—q G, o
‘1
- The total potential difference V due to the battery is the sum i |
I
a q  q 1 1 1 v ( ')]'lHI v
V=V +V,+Ve=—+—+—=q|=—+=—+—=—| BF} W ="
G G q<61 C; Cs> -4,
o The equivalent capacitance is N
q
q _ q = OI -/
v- /1.1 1)\ ~91Cs
q ( + =+ ) 4

K Terminal

(a) tr



Jy ;J‘
Pa,rwu&( J |

r,"}‘ __L. _X_ l J_ C'e$
CT_‘ c2 \ Cs l "‘
) k2 -—T—'

‘ Cc;-:._‘k-
Y= % + ?Z x93

V Vl'-_-VL:Vg

* c, q q q
-__'

V"' Vix Va2« V;
3




Capacitors in Parallel and in Series
~ § 8/16/2024 13

. or

(in series)

For any number n of capacitors in parallel and in series,
n
Coqg = 2 C;i (n capacitors in parallel) CixCaaC,..

o =

n
: 1 |
— = Z — (n capacitors in series) L = & + J- .o =
Ceq —~ G — C esy 1 €



Sample Problem 25.02

Capacitors in parallel and in series
~ § 8/16/2024 14

o Capacitor 1, with C; = 3.55 uF, is charged to a potential difference , =

6.30V, using a 6.30 V Dattery. The battery is then removed, and the
F

capamtor is connected as in the following Figure to an uncharged

capacitor 2, with C, = 8.95 uF. When switch S is closed, charge flows

between the capacitors. Find the charge on each capacitor when

After the switch is closed,
charge is transferred until
the potential differences

equilibrium is reached. match.

o Solution: —— | S

o When capacitor 1 is connected to the battery, the charge it acquires is m}f‘c}‘

qo = C1V, = (3.55x 107°F)(6.30 V) = 22.365 x 107°C 90

- When switch S is closed and capacitor 1 begins to charge capacitor 2, the G Qt =29¢-9, ‘{:9
electric potential and charge on capacitor 1 decrease and those on
capacitor 2 increase until . . ¢ -

o V3 =V, (equilibrium) Cs —El c‘ Yl 9@ 1:*-‘-'1\ )"

6.3 Qo7 Je 0 e teg e °—~J

qf CVsBSSXleb’B zz.J(xloc



Sample Problem 25.02 A, 192490
Capacitors in parallel and in series

I 8/16/2024
V, =V, (equilibrium) v o' sy
0 or -
— | 2p W _ 9.
. (equilibrium) Ct CJ
G G
Because the total charge cannot change, the total after the transfer must be i' - Ao ~%r
h+a0=0% = ©=0p-0 ST cs
The equilibrium equation is
d1 _qo_Ch di1 _Cl _355‘UF_ c-s. - %-Ql
L = === = 0.397 C —_—
C]_ Cz do — 11 Cz 8.95 ‘LlF | %,
~q,=0397(g, —qy) = 0397 g, —0.397q, = 1397, =0.397¢, Q’. — i‘_ -/
S
{
0.397 0.397
wq=——q,=——(22.365%x107°C) =6.36 Xx 107 C = 6.36 uC (2
% =397 9o = 1307 ) H 1!-- z [+ 3
The rest of the initial charge must be on capacitor 2: U q
Gy =q, —qy = 22.365 X 1076 C = 6.36 X 1075C = 16.0 x 107¢ € = 16.0 uC 9, o ———
'~ 1+
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Energy Stored in an Electric Field | ¥ 33"‘;;
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o Work must be done by an external agent to charge a capacitor. We can imagine doing the work
ourselves by transferring electrons from one plate to the other, one by one.

o As the charges build, so does the electric field between the plates, which opposes the continued
transfer. So, greater amounts of work are required.

0 Actually, a battery does all this for us, at the expense of its stored chemical energy. We visualize the
work as being stored as electric potential energy in the electric field between the plates.

o Suppose that, at a given instant, a charge g has been transferred from one plate of a capacitor to the
other. The potential difference VV between the plates at that instant will be g/C. If an extra increment of
charge dgq is then transferred, the increment of work required will be

W - N“’V aw =Vdq =% dg (
2
W -4

AN s



Energy Stored in an Electric Field
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o The work required to bring the total capacitor charge up to a final value q is —

° — LL o\ = J Akt QaSt
w=— =

2C

o The work is stored as potential energy U in the capacitor, so that

2
v=1 1 (CV)? = i(CZVZ) = 1CV2 (potential ener
2C ~ 2C 2C 2 P 57

Energy Density

- In a parallel-plate capacitor, neglecting fringing, the electrical field has the same value at all
points between the plates. Thus, the gnergy density u (The potential energy per unit volume
between the plates) should be uniform.

v U U (Cv2/2) CVvZ  [gA\[(VE\ 1 (V) 3
" "~ volume  Ad  Ad =2Ad=(d)(2Ad)=§go(E> d‘/m

U-= é&-‘-“—'-:'_b.!’_; CVQ:%VQ.- _L‘E..!.z-—_LQEZ'
- Ed A Ad T 2Ad T JR20 T U




Capacitor with a Dielectric
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¢ \F

o If you fill the space between the plates of a capacitor with a dielectric,
which is an insulating material such as mineral oil or plastic, what
happens to the capacitance?

o Michael Faraday — to whom the whole concepts of capacitance is largely |
due and for whom the SI unit of capacitance is named — first looked into

this matter in 1837. J:’J'\pb,) ,g (.‘0(4" C. )"J'L.!,/

o Using simple equipmetnit much like that shown in the Figure, he found 20
that the capacitance increased by a numerical factor x which he called

the dielectric constant of the insulating m'aterial.

7 The dielectric constant of a vacuum is unity by definition. Because air is
mostly empty space, its measured dielectric constant is only slightly e
greater than unity. Even common paper can significantly increase the
capacitance of a capacitor.

Al vl C= g_A_



Capacitor with a Dielectric

> - . A
0 Another effect of the introduction of a dielectric is to limit the potential difference that can be
applied between the plates to a certain value V.., called the breakdown potential.

o If this value is substantially exceeded, the dielectric material will break down and form a
conducing path between the plates. Every dielectric material has a characteristic dielectric

,’ strength, which 1s the maximum value of the e_]_e_(;m_c_ﬁ_d_d that it can tolerate without )
“, breakdown. /"V\ U)) o) u), o, w,u w&‘

o The capacitance of any capacitor in air is

A (:;:9

Cair = &0 E
o Faraday’s discovery was that, with a dielectric completely filling the space between the plates,
SO P
A I el S ol
C—Kgo = K Cqir oj‘;[_s ) s\,

1 Where k (Kapa) is constant called dielectric constant of the materials between the plates.

bl £ IS s P, I L Soe i
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Sample Problem 25.03
One capacitor charging up another capacitor

o A parallel-plate capacitor whose capacitance C is 13.5 pF is charged by a battery to a potential

OO0 EE D

Wztev®= (1% sx(6'2)¢12.5)%= 1:055/0" &
Aer

difference V = 12.5V between its plates. The'chargmg battery is now disconnected, and a

porcelain sTab (k = 6.50) is slipped between the plates.
(a) what is the potential energy of the capacitor before the slab is inserted?
(b) what is the potential energy of the capacitor-slab device after the slab is inserted?

Solution: C = )C Ca. Yo

The potential energy before the slab is inserted is

%
X

/

1 1
U; = ECV2 = E(13.5 X 10712F)(12.5V)% = 1.055 x 107 ] = 1055 pJ

(b) Because the battery has been disconnected, the charge on the capacitor cannot change when
the dielectric is inserted. However, the potential does change

,(.or..a-—'r"'

q° _ WUav _ ).ossxio T_ )62 PF 9 AE
5 Kkc " Jo b5 — (A0 G pas



Sample Problem 25.03

One capacitor charging up another capacitor
¥ 38/16/2024 21

o So, the potential energy of the capacitor-slab is

2
q U; 1055pJ
fF=2eC_ % 650 pJ

- When the slab is introduced, the potential energy decreases by a factor of k.

- The missing energy would be apparent to the person who introduced the slab. The capacitor
would exert a tiny tug on the slab and would do work on it, in amount

W = U; — Ur = (1055 — 162)p] €893 pJ

o If the slab were allowed to slide, between the plates with no restfaint and if there were no
friction, the slab would oscillate back and forth between the plates with a constant
mechanical energy of 893 p/, and this system energy would transfer back and forth between

kinetic energy of the moving slab and potential energy stored in the electric field.
ﬂ e —— # e ————
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Electric Current
- 8/16/2024 3

o The current can be defined as the rate at which charge moves through a point. The current is normally
due to the motion of conduction electrons that are driven by electric fields (such as those set up in a

wire by a battery).

= An electric current i in a conductor is defined by

. dq
‘T

o where dq is the amount of positive charge that passes in time dt.
o The direction of electric current is taken as the direction in which positive charge carriers would move.
=1 The SI unit of electric current is the ampere (A), where

1A=1C/s



Electric Density
|} 8/16/2024 A

7 Sometimes we are interested in the current i in a particular conductor. At other times we take a
localized view and study the flow of charge through a cross section of the conductor at a particular
point.

- To describe this flow, we can use the current density J, which has the same direction as the velocity
of the moving charges if they are positive and the opposite direction if they are negative.

- The magnitude J is equal to the current per unit area through that element.
o The total current through the surface is

- where dA4 is the area vector of the element, perpendicular to the element. If the current is uniform
across the surface and parallel to dA, then [ is also uniform and parallel to dA. So,

o U P

i=j]dA=]JdA=]A = J=



[

Electric Density

8/16/2024
Where A is the total area of the surface. The SI unit for current density is the ampere per square meter
(A/m?).
Drift Speed
When a conductor does not have a current through it, its conduction electrons move randomly, with no
net motion in any direction.
When the conductor does have a current through it, its conduction electrons still move randomly and
they tend to drift with a drift speed v, in the direction opposite that of the applied electric field that
causes the current.
Let us assume that the charge carriers all move with the same drift speed and that the current density J
is uniform across the wire cross-sectional area A. ,
The number of charge carriers in a length L is (nAL) - L -
Where n is the number of carriers per unit volume. @ @) > @ i
The total charge of carries in the length L is 7,

q = (nAL)e —




Electric Density
~ § 8/16/2024 6

- Because the carriers all move along the wire with speed vy, this total charge moves through any cross section
of the wire in the time interval

L
t=—
Va
o The current is
_q _(nALe)
= (L) = ndev,
Va
o The drift speed v, is
l ] > =
Vg == or J = (ne) v,

o The product (ne), whose SI unit is the coulomb per cubic meter (C/m?), is the carrier charge density.
- For positive carriers, (ne) is positive, and J and #, have the same direction.

o For negative carriers, (ne) is negative and , and J and v; have opposite direction.



Sample Problem 26.02

Current density
~ F 8/16/2024 7

1 The current density in a cylindrical wire of radius R = 2.0 mm is uniform
across a cross section of the wire and is J = 2.0 X 10> A/m?2. What is the

current through the outer portion of the wire between radial distances
R/2 and R

1 Solution

1 Because the current density is uniform across the cross section, the
current density J, the current i, and the cross-sectional area A are related

by ] =i/A.
o Thereadarea, (A’ = nR? — n(R/2)? = %nRZ =9.42 x 107° m?),

1 Then, the current through the read area is given by
0 i=JA =(2.0x%10% A/m?) x (9.42 x 107 m?) = 1.9 A.



0

8/16/2024 8

Sample Problem 26.03
In a current, the conduction electrons move very slowly

What is the drift speed of the conduction electrons in a copper wire with radiusr = 900 um when
it has a uniform currenti = 17 mA? Assume that each copper atom contributes one conduction
electron to the current and that the current density is uniform across the wire’s cross section.

Solution
L Ji
Vg =— = —
d nde ne

1
63.54x10"3kg/mole

n = Ny () Prmass = (6.02 x 107 mol 1) ( ) (8.96 x 103kg/m?)

= 8.49 x 10%® electrons/m?

A =mr?=3.14 x (900um)? = 2.54 X 10~° m?2.

i 17x1073 A —7
vy = = =49x 107" m/s = 1.8mm/h
d ™ nae (8.49%1028 electrons/m3)(2.54x10~° m2)(1.6x10~1°¢C) / /




Resistance and Resistivity
~ § 8/16/2024 9

o If we apply the same potential difference between the ends of geometrically similar rods of copper and of
glass, very different currents result. The characteristic of the conductor that enters here is its electrical
resistance.

o We determine the resistance between any two points of a conductor by applying a potential difference V

between those points and measuring the current i that results. The resistance R is
V
R - —
i

o The SI unit for resistance is volt per ampere and ohm (symbol Q), that is
1 ohm =1 = 1 volt per ampere =1V /A

o A conductor whose function in a circuit is to provide a specified resistance is called a resistor. In a circuit
diagram, we represent a resistor and a resistance with the symbol app.- .

o The current is

Il ==

R
- For a given V, the greater the resistance, the smaller the current.



Resistance and Resistivity
~ § 8/16/2024 10

- Now we focusing not on the potential difference V across a particular resistor but on the electric field E at a
point in a resistive material. Instead of dealing with the current i through the resistor, we deal with the

current density J at the point in question. Instead of the resistance R of an object, we deal with the resistivity
p of the material, so

_E
=7

o1 The unit of resistivity is Q. m, where

unit (E)  (V/m) _V —
unit (J)  (A/m?) —an T

o In vector form

E=p]
- The conductivity o of a material is the reciprocal of its resistivity, so
1
g=-—
p

o The SI unit of conductivity is (Q..m)~!. The unit name (mhos per meter) is sometimes used (mho is ohm
backwards).



(]
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Resistance and Resistivity

8/16/2024 11
From the definition of o, so

cE=p] = J=1F

J=oF

Calculating Resistance from resistivity:

O

O

Resistance is a property of an object. Resistivity is a property of a material.

If we know the resistivity of a substance such as copper, we can calculate the resistance of a length of wire
made of that substance. Let A is the cross-sectional area of the wire, let L is its length, and let a potential
difference V exist between its ends.

If the electric field and the current density are constant for all points within the wire, so

14 i
E=- and ]:Z L

I‘ —
The iesistivity is ; |— ;
£t ()= (9 v, e




Resistance and Resistivity
~ § 8/16/2024 12

- The resistance R is

L
RZIDZ

-1 This equation can be applied only to a homogenous isotropic conductor of uniform cross section, with the
potential difference applied as in the Figure.
- (Note: Isotropic materials are the materials whose electrical properties are the same in all directions)

- The macroscopic quantities V, i, and R are of greatest interest when we are making electrical measurements
on specific conductors.

- The microscopic quantities E, J, and p are of greatest interest in the fundamental electrical properties of
materials.



Checkpoint
1 8/16/2024 13

The figure here shows three cylindrical copper conductors along with their face
areas and lengths. Rank them according to the current through them, greatest first,
when the same potential difference V is placed across their lengths.

L
jlll' L1 L2
2 2
(a) () ()
o In Figure (a):
L L
R=Pa=Pa
o In Figure (b):
151 (2x15)L 3L
R=ray=P—a ~P2
- In Figure (c):
(L/2) L
=P A

o The greatest current occurs in Figures (a) and (c), and then in Figure (b).



Sample Problem 26.04

A material has resistivity, a block of the material has resistance
~ § 8/16/2024 14

o A rectangular block of iron has dimensions 1.2 cm X 1.2 cm X 15 cm. A potential difference is to be applied to
the block between parallel sides and in such a way that those sides are equipotential surfaces. What is the
resistance of the block if the two parallel sides are (1) the square ends with dimensions 1.2 cm X 1.2 cm, and
(2) two rectangular sides with dimensions 1.2 cm X 15 c¢m, if the resistivity of iron is 9.68 x 108 Q. m?

o Solution:

o For arrangement 1, we have
L=15cm =0.15m

A=12cmx1.2cm = 1.44 cm? = 1.44 x 10~* m?
n The resistance R is

po L (9.68 x 1078 0.m)(0.15 m)
—Py= (1.44 x 10~*m?)

=1.0x 107*Q = 100 uQ

- For arrangement 2, we have
L=12cm=12%x10"2%m
A=12cmx15cm = 18 cm? = 18 x 10~ *m?

L (9.68x1078Q.m)(1.2 x 1072 m)
—Py (18.0 X 10~*m?)

= 6.5%x 10770 = 0.65 ul



Ohm’s Law
-~ 1 8/16/2024 15

- As we know, a resistor is a conductor with a specified resistance. It has that same resistance
no matter what the magnitude and direction (polarity) of the applied potential difference.
Other conducting devices, however, might have resistances that changes with the applied
potential difference.

o Figure (a) shows how to distinguish such devices. A potential difference VV is applied across
the device being tested, and the resulting current i through the device is measured as V is
varied in both magnitude and polarity. The polarity of V is arbitrary taken to be positive
when the left terminal of the device is at a higher potential than the right terminal. The
direction of the resulting current (from left to right) is arbitrarily assigned a plus sign.

v

|
|



Ohm’s Law
-~ 1 8/16/2024 16

- Figure (b) is a plot of i versus V for one device. This plot is
a straight line passing through the origin, so the ratio i/V
(which is the slope of the straight line) is the same for all
values of V. This means that the resistance R = V/I of the
device is independent of the magnitude and polarity of the
applied potential difference V.

nle
N

Current (mA)

ro

—4 -2 0 +2 +4
Potenual difference (V)

(b)

o Figure (c) is a plot for another conducting device. Current
can exist in this device only when the polarity of V is
positive and the applied potential difference is more than
about 1.5 V. When current does exist, the relation between
i and V is not linear; it depends on the value of the applied
potential difference V.

Current (mA)

—4 -2 0 +2 +4
Potential difference (V)

(()



Ohm’ Law
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o We distinguish between the two types of device by saying that one obeys Ohm’s law and the other does
not.

o A conducting device obeys Ohm’s law when the resistance of the device is independent of the
magnitude and polarity of the applied potential difference.

o A conducting material obeys Ohm’s law when the resistivity of the material is independent of the
magnitude and direction of the applied electric field.

o It is often contended that VV = iR is a statement of Ohm’s law. That is not true. This equation is the
defining equation for resistance, and it applies to all conducting devices, whether they obey Ohm’s law
or not. If we measure the potential difference V across, and the current i through, any device, even a pn
junction diode, we can find its resistance at that value of V as R = V//i.

o The essence of Ohm’s law, however, is that a plot of i versus V is linear; that is, R is independent of V.

- All homogenous materials, whether they are conductors like copper or semiconductor like pure silicon
or silicon containing special impurities, obey Ohm’s law within some range of values of the electric
field. If the field is too strong, however, there are departures from Ohm’s law in all cases.



Power in Electric Circuits

~  8/16/2024 18

o The Figure shows a circuit consisting of a battery B that is connected

by wires, which we assume have a negligible resistance, to an

unspecified conducting device. The device might be a resistor, a li

storage battery), a motor, or some other electrical device. The battery 1

maintains a potential difference of magnitude V across its own

terminals. “
o A steady current i is produced in the circuit, directed from terminal a

to terminal b. The amount of charge dg that moves between those

terminals in time interval dt is equal to (idt). This charge dqg moves 1

through a decrease in potential of magnitude V and thus its electric

potential energy decrease in magnitude by the amount

dU = dqV = (i dt)V



Power in Electric Circuits

¥ 8/16/2024 19

- The principle of conservation of energy tells us that the decrease in electric potential energy from a to b
is accompanied by a transfer of energy to some other form.

o The power P associated with that transfer is the rate of transfer

au (idtVv) . :
== = V (rate of electrical energy transfer)

o The unit of power is volt. Ampere (V. A), where

1V.A=(1i> (1£)=1£=1W
C S S

- As an electron moves through a resistor at constant drift speed, its average kinetic energy remains
constant and its lost electric potential energy appears as thermal energy in the resistor and the
surroundings. On a microscopic scale this energy transfer is due to collisions between the electron and
the molecules of the resistor, which leads to an increase in the temperature of the resistor lattice.




Power in Electric Circuits

¥ 8/16/2024 20

o The mechanical energy that transferred to thermal energy is dissipated (lost) because the
transfer cannot be reversed.

o For a resistor with resistance R, the rate of electrical energy dissipation due to a resistance is

P =iV =i(iR) = i’R
o Or



Checkpoint
~ § 8/16/2024 21

A potential difference V' is connected across a device with resistance R, causing cur-
rent 7 through the device. Rank the following variations according to the change in
the rate at which electrical energy is converted to thermal energy due to the resis-
tance, greatest change first: (a) V is doubled with R unchanged, (b) i is doubled with
R unchanged, (c) R is doubled with V unchanged, (d) R is doubled with i unchanged.

o The rate at which electrical energy is converted to thermal energy due to R is

2V)? V2
Py =( R) = 47, P, = (2)?R = 4 i*R
Vs 1v? = =
PC=(2R)=§?, Pd=l (2R)=2l R

o The greatest in case (a) and (b), then in case (d), then in case (c).



Sample Problem 26.06

Rate of energy dissipation in a wire carrying current
[ 38/16/2024 22

o You are given a length of uniform heating wire made of a nickel-chromium-iron alloy called
Nichrome; it has a resistance R of 72 (). At what rate is energy dissipated if a potential
difference of 120 V is applied across the full length of the wire.

o Solution:

= vz _ ((20v)?)

R 72 00w
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Electromotive Force

An electromotive force device is a battery with two terminals, positive terminal and negative terminal.

The emf of an emf device is the work per unit charge that the device does in moving charge from its
low-potential terminal to its high-potential terminal, so

r
e=2 | + +
dq c
The SI unit for emf is the joule per coulomb (J/C) or volt. _l__ _l__ &
A real electromotive force device include an internal resistance r
For Ideal electromotive force device, the internal resistance r = 0. Ideal emf. Real emf.
In a simple single loop circuit, which consists of an ideal battery B iy - Higher
with emf &, a resistor of resistance R, and two connecting wires | potential
have negligible resistance. Then the relation between the emf and ?‘t%; R lj
the current is 1 \ Lower

- m— potential

P . €
= = — 1
l l R

tn
Il



Other Single-Loop Circuits
|

7 For a simple loop connected to a real emf with internal
resistance r, the figure shows a real battery, with internal
resistance r, wires to an external resistor of resistance R. W

of the conducting materials of the battery and thus is an i '
unremovable feature of the battery. T i%s

,a
o The battery is drawn as if it could be separated into an ideal /

battery with emf £ and a resistor of resistance r.

o The internal resistance of the battery is the electrical resistance l
R i

[ Real battery i
- In this case, the emf can be written as

E—ir—iR=0 = E=ir+iR=i(r+R)
E
r+ R

Sl =



Calculating the Current in a Single Loop

Kirchhoff’s loop rule or Kirchhoff’s voltage law

The algebraic sum of the changes in potential encountered in a

complete traversal of any loop of a circuit must be zero.
E—IR=0

To apply this rule, we choose a direction suppose that is clockwise
direction, then we apply the following rules.

Resistance Rule: For a move through a resistance in the direction of
the current, the change in potential is —iR; and in the opposite
direction is +iR.

EMF Rule: For a move through an ideal emf device in the direction
of the emf arrow, the change in potential is +&; and in the opposite
direction is —€&.

!

— r Higher
/ potential
.+. .
ol =B Q R l’
I ¥
-|- Lower
- — potential

2




Calculating the Current in a Single Loop

o Resistance in Series: The following Figure shows three resistance connected
in series to an ideal battery with emf £. The resistances are connected one b
after another between a and b, and a potential difference is maintained
across a and b by the battery.

= lm

o The potential difference that then exist across the resistance in the series ¢}
produce identical current i in them. In general,

| gl +
L |
S
~
N
e

R,

E—iRi—iR,—iR; =0 = E=i(R{+Ry+R3) .
—NWV
o 7 — (9 -11_
“'T R, +R, + Ry |
0 If we replaced the three resistances with a single equivalent resistance R.,, (’—> a
we find
& et == R, é j
g_iReCI:O = [ = — {?_ eq :
Req
7 So, L -

Req:R1+R2+R3



Potential Difference Between Two Points

We want to find the potential difference between two points in a circuit. For

example, what is the potential difference V;,, — I/, between points a and b? SIS IR e s Dot s

the potential difference between

Note: V,, — V, = iR, is the potential difference across the resistance R. . ——

Then we have
E—ir—iR=0=E—ir—-V,=V)=0 = V,—-V,=E—ir [ —
h |+
But izi, So,
R+T
E R+r r R
— =& — = — = r=2.0%0
h-la=¢ <R+r>r 8<R+r> g(R+r> £R+r R=4.0%Q
R 4.0 O t =12V
. —_ = —— 12 — . 0 = e
Vo=V =Ep =2V rao0a =80V |
al- J

Potential Difference Across a Real Battery

O

Points a and b are located at the terminals of the battery. Thus, the potential difference V;, — V, is the terminal-to-
terminal potential difference V across the battery. So, V =& —ir

If the internal resistance r of the battery were zero, so the potential difference V would be equal to the emf € of the
battery. If the internal resistance r of the battery is greater than zero, so the potential difference V' is less than the
emf € of the battery.



Power, Potential, and emf
5

- When a battery or some other type of emf device does work on the charge carriers to establish a current
i, the device transfers energy from its source of energy to the charge carriers.

- Because a real emf device has an internal resistance r, it also transfers energy to internal thermal
energy via resistive dissipation.

1. The net rate P of energy transfer from the emf device to the charge carriers is
P=iV =i(E—ir)=i€—i*r

2. The term i?r is the rate P. of energy transfer to thermal energy within the emf device.

P. = i?r (internal dissipation rate)

3. The term i€ is the rate P, at which the emf device transfers energy both to the charge carriers and to
internal thermal energy

Pomys = i€ (power of emf device)



Sample Problem 27.01

Single-loop circuit with two real batteries
7y

o The emfs and resistances in the circuit have the following values:

£, =44V, £, =21V == — 1

e, A
= 2.3 Q, Ty = 1.8 Q, R = 55 Q Battery 1 ' Battery 2
b ‘;{_ c
MWW

(a) What is the current i in the circuit?

Solution:

o Because &; is greater than &,, battery 1 controls the direction of i, so the direction is clockwise. Let us
apply the loop rule by going clockwise, against the current, and starting at point a. We find

51—i7”1—iR—i1"2—<92=0

81_€2=i(T1+T2+R)

& —& 44V =21V
‘T +r+R 550+230+180

=0.2396 4 = 240 x 1073 4 = 240 mA




Sample Problem 27.01

Single-loop circuit with two real batteries
7y

o The emfs and resistances in the circuit have the following values:
81 =44 V, 82 - 21 V -
%zi-l-

il
Tl = 23 Q’ TZ = 18 Q’ R = 55 Q Battery 1 f(gl Battery 2
b ‘;{_ c 2

(b) What is potential difference between the terminals of battery 1? !

Solution:

- We need to sum the potential differences between points a and b. Let us start at point b (effectively the

negative terminal of battery 1) and travel clockwise through battery 1 to point a (effectively the positive
terminal). We find that

(Vb—Va)—iT'l-I-gl:O

V,—V, =& —ir, =44V — (02396 A)(2.3Q) = +3.84V ~ 3.8V



Multiloop Circuits

B TS
0 Kirchhoff’s Junction Rule:

o The sum of the currents entering any junction must be equal to the sum of the currents leaving that
junction.

o This rule is often called Kirchhoff’s junction rule (or Kirchhoff’s current law).

= Our basic tools for solving complex circuits are the loop rule (based on the conservation of energy) and
the junction rule (based on the conservation of charge).

O] 11=12+13+I4




Multiloop Circuits
..

o The following figure shows a circuit containing more than one loop. There are  The currentinto the junction
two junctions in this circuit, at b and d, and there are three branches E“;:St equal the C“"Z;‘t e
. . . charge Is conserveaq,).
connecting these junctions. _

= We have two junctions at b and d, and two loops. ‘f_l é_._
. . . . . . o o . a Lp— b ‘; + (
o For junction d : incoming currents i; and i3, and it leaves via outgoing current I: I|

ly.
00t iz =i, ill R, R ]i:; R, [L_,

o For the left-hand loop (badb), If we traverse in a counterclockwise direction
from point b, so

Ll 81 — ilRl + i3R3 =0

o For the right-hand loop (bcdb), If we traverse in a counterclockwise direction
from point b, so

d

—i3R3 - isz - 82 - O

- We now have three equations in the three unknown currents, and they can be
solved.



Multiloop Circuits
..

o Resistance in Parallel:

o Figure (a) shows three resistances connected in parallel to an ideal battery of emf €. The term in parallel
means that the resistance are directly wired together on one side and directly wired together on the other

side, and that a potential difference V is applied across the pair of connected sides.
o All three resistances have the same potential difference V across them, producing a current through each.
|4 , |74 , |74 : o + i3

. 1 :
e — = — = — r—’ a —

o If we apply the junction rule at point a, so | .
e E I ln R, lfz R, li;g

I AU AR AR S S
TR TR "R, "R, \R. R, Ry

+
b -

- If we replaced the parallel combination with the equivalent resistance : ig + i3
V _ (a)
X l —_ 1 a
Req (—
T T T 2 :
- 4+ 4 et = R 2 l;
Req R1 Ry R3 " L



Multiloop Circuits
..

o For the case of two resistance, the equivalent resistance is their product divided by their sum; that is

i i 1 R,+R
_ o 1

Req Ri Ry ~ RiR,
RiR,
R, =———
" R, +R,

- Note: When two or more resistances are connected in parallel, the equivalent resistance is smaller
than any of the combining resistance.



Multiloop Circuits

o Now we summarizes the equivalence relations for resistors and capacitors in series and in parallel.
o For resistors:

n
= z R; (in series: same current through all resistors)
j=1

n
1
—— z = (in parallel: same potential difference across all resistors)
e [}

- For Capacitors:

n
z (in series: same charge on all capacitors)

(in parallel: same potential difference across all capacitors)

IIM3



Sample Problem 27.02
Resistors in parallel and in series

The figure shows a multiloop circuit containing one ideal battery and four
resistances with the following values: R, =20Q, R, =20Q, £ =12V, R; =
30 Q, R, = 8.0 Q. What is the current through the battery?

Solution:

First, we calculate the equivalent resistance R, for R,, and R; in parallel.

=== R,; =120

1.1
Rys R, Rs 20 30
Note that the current through R,; must be i; because charge that moves
through R, and R, must also move through R,;. For this simple one-loop
circuit, the loop rule yields

(9 _ilRl - i1R23 - i1R4 — 0

12V —i,(20Q) — i, (12 Q) — i,(8.0Q) = 0

o1V
ip =-—-=034

The equivalent of parallel
resistors is smaller.

R =20Q




RC Circuits

Charging Capacitor:

Let a capacitor of capacitance C is initially uncharged. To
charge it, we close switch S on point a. This completes an
RC series circuit consisting of the capacitor, an ideal battery
of emf €, and a resistance R.

During charging capacitor, a current increases the charge q
on the plates and the potential difference V. = q/C across
the capacitor.

When V., the potential difference across the capacitor
equals the potential difference across the battery (which is
equal to the emf €), the current is zero.

From the equation g = CV, the equilibrium (final) charge
on the then fully charged capacitor is equal to CE.

R




RC Circuits
I

- But how the charge g(t) on the capacitor plates, the potential difference V. (t) across the capacitor, and
the current i(t) in the circuit vary with time during the charging process?

o We begin by applying the loop rule to the circuit, traversing it clockwise from the negative terminal of
the battery. We find

E~iR-V;=0 or E-iR—-=0
_dq
dt
= The solution of this equation is

i & R d_q + 1_ € (charging equation)
dt C
q=CE¢&(1—e tRE) (charging a capacitor)
The derivative of q(t) is the current i(t) charging the capacitor:
,_dq €
=3 TR
Where % = I, is the maximum current at time ¢t = 0. This tells us that i = I, at t = 0 and that i = 0, when

e t/RC = | e~t/RC(charging a capacitor)

the capacitor becomes fully charged as t — oo.



RC Circuits
I

- The potential difference V. (t) across the capacitor during the charging process is
po_a_¢ (1 — e t/RC)

cTc C
o This tells us that V. = 0 at t = 0 and that V. = € when the capacitor becomes fully charged as t — oo.

= £(1 — e~%/R) (charging a capacitor)

The time constant

o The product RC that appears in the equations of charging a capacitor has the dimensions of time
(because the argument of an exponential must be dimensionless and because, in fact, 1.0 QA x 1.0 F =
1.0 s)

o The product RC is called the capacitive time constant of the circuit and is represented with the symbol
T

T = RC (time constant)



RC Circuits

Discharging a Capacitor:

Assume now that the capacitor is fully charged to a potential I/, equal
to the emf € of the battery. At a new time t = 0, switch S is thrown
from a to b so that the capacitor can discharge through resistance R.

How do the charge g(t) on the capacitor and current i(t) through the €

discharge loop of capacitor and resistance now vary with time?

The differential equation describing q(t) is like the equation in
charging of a capacitor except that now, with no battery in the
discharge loop, € = 0. thus,

dq q _ . . .
R It + co 0 (discharging equation)

The solution to this differential equation is

q = qoe /B¢ (discharging a capacitor)

R




RC Circuits

o This equation tells us that g decreases exponentially with time, at a rate that is set by the
capacitive time constant T = RC.

o At time t = 7, the capacitor’s charge has been reduced to gye ™2, or about 37% of the initial
value. Note that a greater T means a greater discharge time.

o The current is

-4 (q HRC) = qo ! e t/RC = = —e RtC (discharging a capacitor)
Tdt " RC  RC

o This tells us that the current also decreases exponentially with time, at a rate set by 7.
o The minus sign means that the capacitor’s charge g is decreasing.



*

><

iy

51—l ola_coln

UMM AL-QURA UNIVERSITY

General Physics for Engineering
Code: PHY1119-4 Ch 28

Magnetic Fields

Physics Department
College of Science



Contents

N 8/16/2024 4:34:46 PM 2

- The Magnetic Field B

- The Magnetic Force on a Moving Charge

- The Magnetic Force on a Current



The Magnetic Field B

N 8/16/2024 4:34:46 PM 3

- What produces a Magnetic Field 5?

o There are two ways:
T I (Current)

1. One way is to use moving electrically charged particles,
such as a current in a wire, to make an electromagnet. The
electric current produces a magnetic field

B(Field)

2. The other way to produce a magnetic field is by means of
elementary particles such as electrons because these
particles have an intrinsic magnetic field around them.
That is, the magnetic field is a basic characteristic of each S
particle just as mass and electric charge are basic
characteristics. viagnetc

N



The Magnetic Field B

]
o Two magnetic Poles (Magnetic Dipole):
= The closed field lines enter one end of a magnet and exit the <\\ | // -~
other end. The end of a magnet from which the field lines emerge {72
is called the north pole of the magnet; the other end, where the == P\ ',:,.;;;::;_"

field lines enter the magnet, is called the south pole. Because a / '}:ﬁ:i:i:;:;';ﬂ ,;I.;.;.;;::/-‘-_\\‘;.
magnet has two poles, it is said to be a magnetic dipole. ( (( «':mu” »
Y|\
0 Magnetic Field Lines ~ I\

- We can represent magnetic fields with field lines, as we did for
electric fields. Similar rules apply:

1) The direction of the tangent to a magnetic field line at any

point gives the direction of B at that point. | /,__;\
2) The density of the lines (number of normal lines per unit f,f”//f*‘s\\
— [/ — \
area) represents the magnitude of B. U ~\\\| N
N S /| \
Sy,



The magnetic Force on a moving charge
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1 When a charged particle moves through a magnetic field B, a
magnetic force acts on the particle as given by R

S N F
Fa=q(8xB) (@ =
o where q is the particle’s charge (sign included) and v is the
particle’s velocity. =
o The right-hand rule for cross products gives the direction of v X B
B. The sign of g then determines whether F; in the same
direction as # x B or in the opposite direction. v

- The magnitude of Fy is given by
Fz = |q| v Bsin¢ (2)

1 Where ¢ is the angle between © and B.

5 The force Fp acting on a charged particle moving with velocity ¥
through a magnetic field B is always perpendicular to % and B.



The magnetic Force on a moving charge

O
o From Eq.(2), the magnetic field can be written as:
Fp
B = 3
qlvsing )

7 So, the SI unit for B is the newton per coulomb-meter per second or tesla (T)

1 tesl = newton 1 N : N
meter coulomb A.m
(coulomb) (secon d) ( second ) (meter)

7 An earlier (non-SI) unit for B, still in common use, is the gauss (G), where,
1 tesla = 10* gauss



A Circulating Charged Particle
S sip0oadzade 7

01 If a charged particle with charge g and mass m moves with
constant velocity v, then it enters the space where a magnetic
field B is applied perpendicular to v, then there will be a
magnetic force Fg act on the normal direction of both v and B.

1 The particle will move under the influence of Fg, which act to
bend the path of the moving particle. Since this force acts always
normally to v, then the particle will move in a curve.

o In fact, there will be another force, that is the centrifugal force

muv?

which equals act to draw the particle outwards against Fp.

o At balance, the particle will move in a circular path with radius r,
and

mu?

0 Fp =quB = =>T=q—B (7)



A Circulating Charged Particle

]
1 The periodic time T of this cycle (the time for one full revolution)
is given by
0T = 27T _ 2T mv _ 2Tm (8)

v v qB qB
1 The frequency fof the motion (the number of revolutions per
unit time) is given by
1 qB

C fer= (9

2mm

o The angular frequency w of the motion is given by

0 w=2nf=%L (10)

B
m
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Magnetic Force on a Current-carrying Wire

8/16/2024 4:34:47 PM

Consider a length L of the wire is placed in a magnetic field B. All the
electrons in this section of wire will drift past plane xx in a time t =

é. Thus, in that time a charge given by g =it = ivid will pass
through that plane, where v, is the drift velocity of the charge.
From eq.(2), the magnetic force acting on this charge is given
by

Fgz =|q|lvy; Bsing = ié vy Bsing = iLBsing (11)

If the angle ¢ (¢ is the angle between the L and B) equals 90°,
then the force on the wire is

Fp = iLB (12)

Equation (11) can be written as

Fz=iLxB (13)




Example 1

B 8/16/2024 4:34:47 PM 10
1 A straight, horizontal length of copper wire has a current i = 28 A through it. What

are the magnitude and direction of the minimum magnetic field B needed to
suspend the wire — that is, to balance the gravitational force on it? The linear density A

(mass per unit length) of the wire is 46.6 g/m. .
1 . }'}J

0 Solution: N
o Let L is the length of the wire , and m its mass Lta B >
0 m=466x%x10"3xLkg
1 Since the wire is horizontal, then to get the force upward against the gravity, we mg

have to apply a magnetic field in the horizontal plane normal to the wire, as shown in £

the figure.

1 So, at the balance, we get
o ThenFg =mg= ILB =466 X103 XL

46.6X1073  46.6x1073 _
i = o —16x%x1072T

7 Then B =
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Magnetic Field due to a Current
]

0 Biot and Savart Law:
1 The magnitude of the field dB produced at point P at distance r by

a current-length element i ds can be expressed as \
- dB = /,Loidsszine (1) \z(ls =
am T %\ = d B (into
o where 8 is the angle between the directions of ds and r (vector that ~>=m  page)
points from ds towards P). Symbol u, is a constant, called the \\ £
permeability constant, whose value is defined to be exactly \

0 U, =4mrx 1077 T -m/A
© The direction of dB, is shown in the figure as being pointed into the ;( \ Current

page and is given as the cross product ds X 7. We can therefore distribution
write Eq. (1) in vector form as

Po L ASXT Uy i dSXT

- dB =

(2)

At 12 4T 713



Magnetic Field due to a Current
Magnetic Field Due to a Current in a Long Straight Wire

N 8/16/2024 4:34:26 PM 4
o Using the law of Biot and Savart, we get
__ Mpidssinb
1 dB = pr— (1)

o The direction of dB in the figure is that directed into the page.

0 The magnitude of dB at point P has this same direction for all the
current-length elements into which the wire can be divided. Thus,
we can find the magnitude of the magnetic field produced at P by

the current-length elements in the upper half of the infinitely long iT -
. . . . — Wire with current
wire by integrating dB in Eq. (1) from O to co. | into the page
_ o0 __ Uol (oosin@ ds
0 B=2] dB—#fO — (3)

1 Form the figure we get

—_— 2 2 1 —_— R
1 r=+vVs“+R & sinf T




Magnetic Field due to a Current

Magnetic Field Due to a Current in a Long Straight Wire
N 8/16/2024 4:34:26 PM 5

o Substituting in eq.(3), we get

00
[ roo R ds [ S
2 °0 (s2+R?)3/2  2mR |(s?+R%)Y/?]
Kol
0 ~ B = 4
2TTR ( )
(!75
sl R 5
P
1
Wire with current

into the page
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Magnetic Field due to a Current
Magnetic Field Due to a Current in a Circular ARC of Wire

8/16/2024 4:34:26 PM

Figure (a) shows an arc-shaped wire with central angle ¢, radius
R, and center C, carrying current i.

At C, each current-length element i ds of the wire produces a
magnetic field of magnitude dB given by Eq. (1). Moreover, as
Fig. (b) shows, no matter where the element is located on the
wire, the angle 8 between the vectors ds and r is 90°; also, r
= R.

Therefore, Eq. (1) becomes;

i ds sin90° ids
dB = £ = Lo (1)
41T R? 41 R?

The direction of the field dB is perpendicular to a radial line
extending through point C from the element, either into the
plane of Fig. (a) or out of it. To tell which direction is correct, we
use the right-hand rule for any of the elements, as shown in Fig.
(c). So, dB is out of the plane of the figure,

7

7
)
R_-~
7

(".:i(l) 11' (,‘o\j’J ds
\\ i\‘

N

(a) (D)

(¢)



Magnetic Field due to a Current
Magnetic Field Due to a Current in a Circular ARC of Wire

B 38/16/2024 4:34:27 PM 7
1 The total field can be determined by the integration of eq. (1),
SO
Iio ¢ R d¢ Uo i ¢ R ,’/
0 B=[dB="2 | =, dp = R,

cel )P Tf Ce : ds
0 - B=“°‘¢ (5) i\ \wf
41T R S o i\

01 For a wire of a shape of closed circle, we find ¢ = 2m, so the k [
magnetic field at the center of the circle is given by (@) (0)

o B =He! 6
2R () 1\

(¢)



Force Between two Parallel Currents
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o Two long parallel wires carrying currents exert forces
on each other.

o The figure shows two such wires, separated by a
distance d and carrying currents i, and i;. Let us
analyze the forces on these wires due to each other. //""

1 The force F, on wire b due to the current in wire a

can be written as /[' |
b B, (due to i,)

!

L] Fba=ibLXBa (7)
o Where B, is the filed at b due to the current i, and given by

— Hola
a 2 d

o And L is the length vector of the wire. Since both L and B, are perpendicular to each other,
equation (7) can be written as



Force Between two Parallel Currents

N 8/16/2024 4:34:27 PM 9

" Fyq = ip LB, sin = fe=-a (8)

1 The direction of Fy is the direction of the cross product L X B,,.

01 Applying the right-hand rule for cross products to L X B, in the figure, we see that
Fy, is directly toward wire a, as shown.

1 That is Parallel currents attract each other, and antiparallel currents repel each other.

t B, (due to i, )



Ampere’s Law
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0 Ampere’s law is
B SﬁB- dS = Ug lenc 9)

o That is the loop integral of the magnetic field around a closed loop (95 B.ds) is equal to the net
current i, enclosed within the loop multiplied by u,.

0 To apply Ampere’s law, we mentally divide Amperian
the loop into differential vector elements ds loop
that are everywhere directed along the _ —
tangent to the loop in the direction of integration. ®:; B

o Thus, Ampere’s law can be written as
5 $B.dS=¢BcosO ds = g ipnc (10)

1 Notes:

Direction of
integration

1. The closed loop through which the linear integration is carried out is called Amperian loop
which should be chosen in such a way to facilitate the solution.

2. The net current within the Amperian loop is i, = 1 + I3



Magnetic Field Outside a Long Straight Wire with Current

B 8/16/2024 4:34:27 PM 11

1 The figure shows a long straight wire that carries current i directly
out of the page.

Amperian
loop

1 Equation (9) tells us that the magnetic field B produced by the
current has the same magnitude at all points that are the same

distance r from the wire; that is, the field B has cylindrical symmetry
about the wire. g

o We can take advantage of that symmetry to simplify the integral in
Ampere’s law (Egs. (9) and (10)) if we encircle the wire with a
concentric circular Amperian loop of radius 7, as in the figure.

1 The magnetic field then has the same magnitude B at every point on
the loop. We shall integrate counterclockwise, so that ds has the
direction shown in the figure.

7 §B.d$=¢BcosO ds=B¢ ds = B(2ar) = p,i

0 > B =i (11)

21T



Magnetic Field (inside) of a Solenoid
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1 The solenoid is a helical coil of wire such as in the figure (a).

1 The magnetic field due to the current passing in the solenoid is
shown in figure (b). It is shown that the magnetic field is uniform
inside the solenoid.

= Now let us chose the Amperian loop in shape of rectangular
(abcd) as shown in figure (c). And let the magnetic field outside
the solenoid is zero.

= Now apply Ampere law (Eqg. (9))
0 $B.dS = Uy ipne

— > b = > - > d —= > — >
o §B.dS=[ B.dS+ [ B.dS+ [ B.dS+ [ B.ds

o & §B.dS = [ B.d5 = Bh = p, ien F

000 000000N0000D0D0O000000aan|
I/ [

i

— = =
1 —a b
T st

.

|
\Y \__
M

(c)




Magnetic Field (inside) of a Solenoid

N 8/16/2024 4:34:28 PM
7 The second and the fourth term has been vanished because ds is

perpendicular to B. The third term has been vanished because
the magnetic field outside the solenoid is zero.

1 The net current within the loop is given by

0 lepe =1Inh

o Where n be the number of turns per unit length of the solenoid,
and i is the current through one turn, h is the length of the
rectangular.
1 Now Ampere’s law become
0 Bh=polenc=Uolinh
o Then
- h >
0 B=uy,in (12) d = lf ,.
Fi000000000N000000000000a00E.
- i
B+ ==‘ a = b 1

1 >

\ \
\ J—
N 3 3 I

(c)
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Solenoids and Toroids

8/16/2024 4:34:28 PM
The toroid, may describe as a (hollow) solenoid that has been curved until its
two ends meet, forming a sort of hollow bracelet. M
From the symmetry, we see that the lines of B form concentric circles inside W 1)) 7i
the toroid, directed as shown in figure (b).
The magnetic field B inside the toroid (inside the hollow of the bracelet) can o
be determined using Ampere’s law. ~ Amperian loop

S —@Q"@_qm-,:\ D
2.8 [ 2qq

The Amperian loop is taken as a closed circle of radius r which located inside
the toroids as shown in figure (b). Applying Ampere’s law yields

(B)(2mr) = poiN

Where i is the current through the toroid, and N is the total number of turns.
Then

__ MoIN 1

(13)

21T T

14
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