1. Radiant energy is

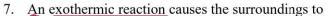
- the energy stored within the structural units of chemical substances.
- B) the energy associated with the random motion of atoms and molecules.
- solar energy, i.e. energy that comes from the sun. C)
- energy available by virtue of an object's position. D)

2. Thermal energy is

- the energy stored within the structural units of chemical substances.
- the energy associated with the random motion of atoms and molecules. B)
- C) solar energy, i.e. energy that comes from the sun.
- D) energy available by virtue of an object's position.

3. Chemical energy is

- the energy stored within the structural units of chemical substances.
- B) the energy associated with the random motion of atoms and molecules.
- C) solar energy, i.e. energy that comes from the sun.
- D) energy available by virtue of an object's position.


4. Potential energy is

- the energy stored within the structural units of chemical substances.
- the energy associated with the random motion of atoms and molecules. B)
- C) solar energy, i.e. energy that comes from the sun.
- D) energy available by virtue of an object's position.

5. Heat is

- A) a measure of temperature.
- a measure of the change in temperature. B)
- C) a measure of thermal energy.
- D) a measure of thermal energy transferred between two bodies at different temperature.
- 6. An endothermic reaction causes the surroundings to
 - A)
 - warm up. B) become acidic.
- decrease in temperature. release CO₂.

C) condense.

warm up.

D) decrease its temperature.

- B) become acidic.
- E) release CO₂.
- C) expand.

8. A sample of nitrogen gas expands in volume from 1.6 L to 5.4 L at constant temperature. Calculate the work done in joules if the gas expands (a) against a vacuum, (b) against a constant pressure of 0.80 atm, and (c) against a constant pressure of 3.7 atm. $W = -P \Delta V$

Answer

a)
$$P=0$$
 $W=-P\Delta V=-0(\Delta V)=0$

a)
$$P=0$$
 $W=-P\Delta V=-0$
b) $P=0.8$ atm $W=-P\Delta V$

$$W = -P\Delta V$$

$$W = -0.8 \times 1.013 \times 10^{5} \times 3.8 \times 10^{3}$$

$$W = -307 \pm -3 \times 10^{5} \pm 3.8 \times 10^{3}$$

9. The work done to compress a gas is 74 J. As a result, 26 J of heat is given off to the surroundings. Calculate the change in energy of the gas.

10. Determine the amount of heat (in kJ) given off when 1.26×10^4 g of NO₂ are produced according to the equation: $2NO(g) + O_2(g) \longrightarrow 2NO_2(g) \Delta H = -114.6 \text{ kJ/mol}$

$$n = \frac{m}{M_W} = \frac{1.26 \times 10^4}{46} = 273.9$$

3 كاب محمد لطاقة من المراجد المراجد محمد لفاقة المنائجة المول الواهر عدم لعامة المنائجة المول الواهر 3 محمد المائحة المول الواهر 57.3 x 273.9 = 1.57 x 104 Ft

11. Consider the reaction:

$$H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$$
 $\Delta H = -184.6 \text{ kJ/mol}$

If 3 moles of H_2 react with 3 moles of Cl_2 to form HCl, calculate the work done against a pressure of 1.0 atm at 25°C. What is ΔE for this reaction? Assume the reaction goes to completion.

Solution:

$$\Delta H = -184.6 \times 3 = -553.8 \text{ bJ/mol}$$

$$\Delta E = \Delta H + PAV$$

$$Visit | Part | Visit | Part | Part$$

12. Consider two metals A and B, each having a mass of 100 g and an initial temperature of 20°C. The specific heat of A is larger than that of B. Under the same heating conditions, which metal would take longer to reach a temperature of 21°C?

Solution:

13. A piece of silver of mass 362 g has a heat capacity of 85.7 J/°C. What is the specific heat of silver?

Solution:

$$s = \frac{C}{m} = \frac{85.7}{362} = 0.237 \text{ J/c.9}$$

14. A 0.1375-g sample of solid magnesium is burned in a constant-volume bomb calorimeter that has a heat capacity of 3024 J/°C. The temperature increases by 1.126°C. Calculate the heat given off by the burning Mg, in kJ/g and in kJ/mol.

Solution:

Solution:
$$m = 0.13759$$
 $\Delta t = 1.126$ C° $C = 30247/2$ C°

$$Q = C\Delta t = 3624 \times 1.126 = 3405 t = 3.405 t$$

 $Q = C\Delta t = 3624 \times 1.126 = 3405 t = 3.405 t$
 $Q = C\Delta t = 3624 \times 1.126 = 3405 t = 3.405 t$
 $Q = C\Delta t = 3624 \times 1.126 = 3405 t = 3.405 t$
 $Q = C\Delta t = 3624 \times 1.126 = 3405 t = 3.405 t$
 $Q = C\Delta t = 3624 \times 1.126 = 3405 t = 3.405 t$
 $Q = C\Delta t = 3624 \times 1.126 = 3405 t = 3.405 t$
 $Q = C\Delta t = 3624 \times 1.126 = 3405 t = 3.405 t$
 $Q = C\Delta t = 3624 \times 1.126 = 3405 t = 3.405 t$
 $Q = C\Delta t = 3624 \times 1.126 = 3405 t = 3.405 t$
 $Q = C\Delta t = 3624 \times 1.126 = 3405 t = 3.405 t$
 $Q = C\Delta t = 3624 \times 1.126 = 3405 t = 3.405 t$
 $Q = C\Delta t = 3624 \times 1.126 = 3405 t$
 $Q = C\Delta t = 3624 \times 1.126 = 3405 t$
 $Q = C\Delta t = 3624 \times 1.126 = 3405 t$
 $Q = C\Delta t = 3646 \times 1.126 = 3405 t$
 $Q = C\Delta t = 3646 \times 1.126 = 3405 t$
 $Q = C\Delta t = 3646 \times 1.126 = 3405 t$
 $Q = C\Delta t = 3646 \times 1.126 = 3405 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 = 3405 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646 \times 1.126 t$
 $Q = C\Delta t = 3646$

15. Which is the more negative quantity at 25°C: ΔH_f^o for $H_2O(l)$ or ΔH_f^o for $H_2O(g)$? **Solution:**

HILCRY is more stable

Dity (Hrow) more negative

16. Suggest ways (with appropriate equations) that would enable you to measure the ΔH°_{f} values of Ag₂O(s) and CaCl₂(s) from their elements. No calculations are necessary.

$$2 Ag + 10_{2} \rightarrow Ag_{2}O$$

$$\Delta H_{rxn} = \Delta H_{p}(Ag_{2}O)$$

$$Ca + Cl_{2} \rightarrow CaCl_{2}$$

$$\Delta H_{ryn} = \Delta H_{s}^{c}(CaCl_{2})$$

17. Calculate the heat of decomposition for this process at constant pressure and 25°C: $CaCO_3(s) + CaO(s) \rightarrow CO_2(g)$

(Look up the standard enthalpy of formation of the reactant and products in Table) **Solution:**

$$\Delta H_{r,n} = \left[\Delta H_{f}(Co2) + \Delta H_{f}(Co2)\right] - \Delta H_{f}(Co2)$$

$$= \left[-635.1 - 393.5\right] - - 1206.9$$

$$= 178 + t/moL$$

Table 3.10.1: Some Standard Enthalpies of Formation at 25°C.

Compound	$\Delta H_f/kJ$ mol ⁻¹	$\Delta H_f/\text{kcal}$ mol^{-1}	Compound	ΔH _f /kJ mol ⁻¹	$\Delta H_f / \text{kcal}$ mol^{-1}
AgCl(s)	-127.068	-30.35	H ₂ O(g)	-241.818	-57.79
AgN ₃ (s)	+620.6	+148.3	H ₂ O(1)	-285.8	-68.3
Ag ₂ O(s)	-31.0	-7.41	H ₂ O ₂ (/)	-187.78	-44.86
Al ₂ O ₃ (s)	-1675.7	-400.40	$H_2S(g)$	-20.63	-4.93
Br ₂ (/)	0.0	0.00	HgO(s)	-90.83	-21.70
Br ₂ (g)	+30.907	+7.385	I ₂ (s)	0.0	0.0
C(s), graphite	0.0	0.00	$I_2(g)$	+62.438	+14.92
C(s), diamond	+1.895	+0.453	KCl(s)	-436.747	-104.36
CH ₄ (g)	-74.81	-17.88	KBr(s)	-393.798	-94.097
CO(g)	-110.525	-26.41	MgO(s)	-601.7	-143.77
$CO_2(g)$	-393.509	-94.05	$NH_3(g)$	-46.11	-11.02
$C_2H_2(g)$	+226.73	+54.18	NO(g)	+90.25	+21.57
$C_2H_4(g)$	+52.26	+12.49	$NO_2(g)$	+33.18	+7.93
$C_2H_6(g)$	-84.68	-20.23	N ₂ O ₄ (g)	+9.16	+2.19
C ₆ H ₆ (/)	+49.03	+11.72	$NF_3(g)$	-124.7	-29.80
CaO(s)	-635.09	-151.75	NaBr(s)	-361.062	-86.28
CaCO ₃ (s)	-1206.92	-288.39	NaCl(s)	-411.153	-98.24
CuO(s)	-157.3	-37.59	O ₃ (g)	+142.7	+34.11
Fe ₂ O ₃ (s)	-824.2	-196.9	SO ₂ (g)	-296.83	-70.93
HBr(g)	-36.4	-8.70	SO ₃ (g)	-395.72	-94.56
HCI(g)	-92.307	-22.06	ZnO(s)	-348.28	-83.22
HI(<i>g</i>)	+26.48	+6.33			

- 18. The standard enthalpies of formation of ions in aqueous solutions are obtained by arbitrarily assigning a value of zero to H^+ ions; that is, $\Delta H^0_f[H^+(aq)] = 0$.
- (a) For the following reaction:

$$HCl(g) \xrightarrow{H2O} H(aq) + Cl(aq) \Delta H^{\circ} = -74.9 \text{ kJ/mol}$$

calculate ΔH^{o}_{f} for the Cl⁻ ions.

(b) Given that ΔH°_{f} for OH^{-} ions is - 229.6 kJ/mol, calculate the enthalpy of neutralization when 1 mole of a strong monoprotic acid (such as HCl) is titrated by 1 mole of a strong base (such as KOH) at 25°C.

a)
$$\Delta H_{eym} = \Delta H_{f}(H^{+}) + \Delta H_{f}(c_{1}^{-}) - \Delta H_{f}(Hc_{1})$$

$$-74.9 = 0 + \Delta H_{f}(c_{1}^{-}) - -92.3$$

$$\Delta H_{f}(c_{1}^{-}) = -74.9 - 92.3$$

$$= -167.2 + \frac{1}{2} / moL$$

19. The standard enthalpy change for the following reaction is 436.4 kJ/mol:

$$H_2(g) \rightarrow H(g) + H(g)$$

Calculate the standard enthalpy of formation of atomic hydrogen (H).

$$\Delta H_{rxn} = 2\Delta H_{p}(H) - \Delta H_{g}(H^{2})^{2}$$

$$436.4 = 2\Delta H_{f}(H)$$

20. From these data,

$$S(rhombic) + O_2(g) \rightarrow SO_2(g)$$
 $\Delta H^{\circ}_{rxn} = -296.06 \text{ kJ/mol}$
 $S(monoclinic) + O_2(g) \rightarrow SO_2(g)$ $\Delta H^{\circ}_{rxn} = -296.36 \text{ kJ/mol}$

calculate the enthalpy change for the transformation

$$S(rhombic) \rightarrow S(monoclinic)$$

(Monoclinic and rhombic are different allotropic forms of elemental sulfur.)

Solution:

21. From the following data,

C(graphite) +
$$O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\circ}_{rxn} = -393.5 \text{ kJ/mol}$
 $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(l)$ $\Delta H^{\circ}_{rxn} = -285.8 \text{ kJ/mol}$

 ${}^{2}C_{2}H_{6}(g) + 7O_{2}(g) \xrightarrow{2} 4CO_{2}(g) + 6H_{2}O(l) \Delta H^{\circ}_{rxn} = -3119.6 \text{ kJ/mol}$

calculate the enthalpy change for the reaction

$$2C(graphite) + 3H_2(g) \rightarrow C_2H_6(g)$$

Solution:

$$2C_{(9)^{10})} + 20/2 \rightarrow 20/02$$
 $\Delta H = 787$
 $2/08 + 3/120 \rightarrow C_{2}H_{6} + \frac{7}{2}/02 \qquad \Delta H = 1559.8$
 $3H_{2} + \frac{3}{2}/02 \rightarrow 3H_{2}O \qquad \Delta H = 857.4$

22. Calculate the standard enthalpy change for the reaction $2Al(s) + Fe_2O_3(s) \longrightarrow 2Fe(s) + Al_2O_3(s)$ given that

$$2Al(s) + 3/2O_2(g) \longrightarrow Al_2O_3(s) \, \varDelta H^\circ_{rxn} = \text{-} \, 1669.8 \text{ kJ/mol}$$

 $2\text{Fe(s)} + 3/2\text{O}_2(g) \longrightarrow \text{Fe}_2\text{O}_3(s) \Delta H^{\circ}_{\text{rxn}} = -822.2 \text{ kJ/mol}$

Solution:

DH = -166a + 822.2 = - 847.6 kg/all

23. Define specific heat.

Ans: The amount of heat required to raise the temperature of one gram of a substance by one degree Celsius. 9=m SAT

24. Mark the Answer with True or False

a) The specific heats of water and iron are 4.184 and 0.444 J/g°C, respectively. When equal masses of water and iron both absorb the same amount of heat, the temperature increase of the water will $\Delta T_{ii} = \frac{q_{ii}}{m S_{ii}} \qquad \Delta T_{i} = \frac{q_{i}}{m S_{ii}}$ be 5.42 times greater than that of the iron.

False Ans: The

b) Chemical reactions in a bomb calorimeter occur at constant pressure.

Ans: True

c) If $2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$, $\Delta H^{\circ} = -1203.6$ kJ/mol. For Mg(s) + $(1/2)O_2(g) \longrightarrow MgO(s)$, the enthalpy change is $\Delta H = -601.8$ kJ/mol.

Ans: True

d) The heat capacity of 20.0 g of water is 83.7 J/°C.

C= ms = 20 x 4.184

e) The work done on the surroundings by the expansion of a gas is $w = -P\Delta V$.

Ans: True

f) The heat absorbed by a system at constant pressure is equal to $\Delta E + P\Delta V$.

Ans: True

g) In an endothermic process, heat is absorbed by the system.

Ans: True

h) A home aquarium is an example of an open system.

i) The heat of hydration (ΔH_{hydr}) of ions is always endothermic.

Ans: False