
Chapter 1 
Linear Momentum and Collisions
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9.1 - Linear Momentum and Its Conservation

Definition

• The linear momentum of a particle, or an object that 
can be modeled as a particle, of mass 𝑚 moving with a 
velocity 𝐯 is defined to be the product of the mass and 
velocity:

𝐩 = 𝑚𝐯

• The terms momentum and linear momentum will be 
used interchangeably.
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• Linear momentum is a vector quantity.

• Its direction is the same as the direction of the velocity.

• The dimensions of momentum are ML/T (Mass · Length/ 
Time)

• The SI units of momentum are kg · m / s

• Momentum can be expressed in component form:

𝑝! = 𝑚𝑣!, 	 𝑝" = 𝑚𝑣", 	 𝑝# = 𝑚𝑣#

Linear Momentum
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Newton’s Second Law and Momentum

• The linear momentum can be related to the resultant force acting 
on a particle through Newton’s second law:

!�⃗� = 𝑚a = 𝑚
𝑑v
𝑑𝑡

=
𝑑(𝑚v)
𝑑𝑡

=
𝑑p
𝑑𝑡

⇒!�⃗� =
𝑑p
𝑑𝑡

• The time rate of change of the linear momentum of a particle is 
equal to the net force acting on the particle:

- This is the form in which Newton presented the Second Law.
- It is a more general form than the one we used previously.
- This form also allows for mass changes.
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• Consider an isolated system with two masses: 
- 𝑚$ moves at a velocity v$	due to a force	�⃗�%$ 

exerted on it by 𝑚%.
- 𝑚% moves at a velocity v%	due to a force	�⃗�$% 

exerted on it by 𝑚$.

• From Newton’s third law: 

�⃗�$% = −�⃗�%$

⇒ �⃗�$% + �⃗�%$ = 0

Derivation 
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• From Newton’s second law: 

𝑚!a! +𝑚"a" = 0

⇒	𝑚!
𝑑v!
𝑑𝑡

+ 𝑚"
𝑑v"
𝑑𝑡

= 0

⇒
𝑑(𝑚!v!)

𝑑𝑡
+
𝑑(𝑚"v")

𝑑𝑡
= 0

⇒
𝑑
𝑑𝑡 (𝑚!v! +𝑚"v") = 0

⇒ 𝑚!v! +𝑚"v" = constant	

Derivation, cont. 

• Hence, for an isolated 
system, the sum of the 
quantity 𝑚v	 for each 
particle is conserved.  

• This is the reason for the 
definition of linear 
momentum.
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• Whenever two or more particles in an isolated system 
interact, the total momentum of the system remains 
constant.

𝐩&'& = constant

• The momentum of the system is conserved, not necessarily 
the momentum of an individual particle.

• This also tells us that the total momentum of an isolated 
system equals its initial momentum or final momentum.

𝐩&'& = 𝐩&'& ( = 𝐩&'& ) = constant

Conservation of Linear Momentum
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9.2 Analysis Model: Isolated System (Momentum)



• For two particles, conservation of momentum can be 
expressed mathematically in various ways:
- Vector form: 

𝐩$( + 𝐩%( = 𝐩$) + 𝐩%)

- Component form: 

6
𝑝$(! + 𝑝%(! = 𝑝$)! + 𝑝%)!
𝑝$(" + 𝑝%(" = 𝑝$)" + 𝑝%)"
𝑝$(# + 𝑝%(# = 𝑝$)# + 𝑝%)#

• Remember: Conservation of momentum can be applied to 
systems with any number of particles.

Conservation of Linear Momentum, cont.
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A 60-kg archer stands at rest on frictionless ice and fires a 0.030-kg 
arrow horizontally at 85 m/s. With what velocity does the archer 
move across the ice after firing the arrow?

Example 9.1: The Archer
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Given 
𝑚!=60 kg,   𝑣!" = 0,  𝑣!# =? 
𝑚$=0.030 kg,  𝑣$" = 0,  𝑣$# = 85m/s

Solution 
From the conservation of momentum 

𝑚!𝑣!" +𝑚#𝑣#" = 𝑚!𝑣!$ +𝑚# 𝑣#$

0 = 𝑚!𝑣!$ +𝑚# 𝑣#$

𝑚!𝑣!$ = −𝑚# 𝑣#$

𝑣!$ =
−𝑚# 𝑣#$
𝑚!

=
−(0.03)(85)

60

⇒ 𝑣!$ = −0.042m/s





9.3 Analysis Model: Nonisolated System (Momentum)

• Knowing the change in momentum caused by a force is 
useful in solving some types of problems. From Newton’s 
Second Law:

!�⃗� =
𝑑p
𝑑𝑡

⇒ 𝑑p =!�⃗� 	𝑑𝑡

• Integrating, 

	 =
p!

p"
𝑑p = =

%!

%"
!�⃗� 	𝑑𝑡

	 ⇒ p$ − p" = Δp = =
%!

%"
!�⃗� 	𝑑𝑡

Derivation 
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Impulse

• The integral is defined as the impulse, 𝐈 , of the force 
acting on an object over the time interval Δ𝑡 = 𝑡) − 𝑡(

𝐈 = =
%!

%"
!�⃗� 	𝑑𝑡

• The impulse of the force acting on a particle equals the 
change in the momentum of the particle.

𝐈 = Δp

- This expresses the impulse-momentum theorem 
which is equivalent to Newton’s Second Law
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• The force may vary with time.

• Dimensions of impulse is the same 
as momentum.

• Impulse is not a property of the 
particle, but a measure of the change 
in momentum of the particle.

Impulse, cont.
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• Impulse is a vector quantity.

- The magnitude of the impulse is equal to the area under 
the force-time curve.

- The direction of impulse is the same as the direction of 
change in momenta. 



2�⃗�
#$%

≡
1
Δ𝑡8&%

&&
2�⃗� 	𝑑𝑡

• The impulse is then expressed as

𝐈 = 2�⃗�
#$%

Δ𝑡

Impulse and Time-Averaged Force

• This would give the same impulse as the time-varying force does.
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• Because the net force imparting an impulse to a particle can 
generally vary in time, it is convenient to define a time-averaged 
net force:



• In Impulse Approximation, it is assumed that one force 
acting on a particle acts for a short time but is much greater 
than any other force present.

• This approximation is especially useful in analyzing 
collisions.

• This force will be called the impulsive force. The impulse 
will then be calculated by: 

𝐈 = �⃗� Δ𝑡

• The particle is assumed to move very little during the 
collision. Hence, p( and p) represent the momenta 
immediately before and after the collision.

Impulse Approximation
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Problem Analysis 

Isolated system Non-isolated system 

𝐈 = Δp'('𝐩'(' = constant

2�⃗�)*' = 0 !�⃗�
&'(

=
𝐈
Δ𝑡

Average Force Impulsive Force 

�⃗� =
𝐈
Δ𝑡
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a)  If the collision lasts for 0.150 s, find the 
impulse caused by the collision and the 
average force exerted on the automobile.

b) What if the car did not rebound from the 
wall? Suppose the final velocity of the 
car is zero and the time interval of the 
collision remains at 0.150 s. Would that 
represent a larger or a smaller net force 
on the car?

Example 9.3: How Good Are the Bumpers?
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In a particular crash test, an automobile of mass 1500 kg collides with 
a wall, as shown in Figure. The initial and final
velocities of the automobile are 𝐯+ = −15.0@i	m/s and 𝐯, = 2.60@i	m/s, 
respectively.





Given 
𝑚=1500 kg 
𝐯" = −15.0Bi	m/s 
𝐯$ = 2.60Bi	m/s, 
𝑡 = 0.150s

a) First we calculate the impulse:

𝐈 = Δ𝐩
𝐈 = 𝐩$ − 𝐩"
𝐈 = 𝑚𝐯$ −𝑚𝐯"
𝐈 = 𝑚(𝐯$−𝐯")
𝐈 = 1500(2.60Bi + 15Bi)
𝐈 = 1500(17.6Bi)
𝐈 = [2.64×10)Bi] kg.m/s

Solution:
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The average force:

�⃗�*+, =
𝐈
Δ𝑡

�⃗�*+, =
2.64×10)Bi
0.150

�⃗�*+, = 1.76×10-Bi N



b) The impulse when 𝐯) = 0:

 
𝐈 = Δ𝐩
𝐈 = 𝐩) − 𝐩(
𝐈 = 𝑚𝐯) −𝑚𝐯(
𝐈 = −𝑚𝐯(
𝐈 = −1500(−15>i)
𝐈 = [2.25×101>i] kg.m/s

Comparing the two forces, we conclude that the force is 
smaller in case b. 
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The average force:

�⃗�234 =
𝐈
Δ𝑡

�⃗�234 =
2.25×101>i
0.150

�⃗�234 = 1.5×105>i N



9.4 Collisions in One Dimension

Characteristics

• The time interval during which the velocity changes from its 
initial to final values is assumed to be short.

• The interaction forces are assumed to be much greater than 
any external forces present.
- This means the impulse approximation can be used.
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• We use the term collision to represent an 
event during which two particles come close 
to each other and interact by means of 
forces
- May involve physical contact, but must 

be generalized to include cases with 
interaction without physical contact.



Types of Collisions

• Perfectly elastic collisions 
occur on a microscopic level.

• In macroscopic collisions, 
only approximately elastic 
collisions actually occur, 
some energy is lost to 
deformation, sound, etc.

• If the objects stick 
together after the 
collision, it is a perfectly 
inelastic collision.

Momentum is conserved in all collisions

Elastic collision Inelastic collision

momentum and kinetic energy are 
conserved

kinetic energy is not conserved
momentum is conserved
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Perfectly Inelastic Collisions

• Since the objects stick together, they 
share the same velocity after the 
collision.

• From the conservation of momenta:

• 𝑚$v$( +𝑚%v%( = (𝑚$ +𝑚%)v)
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⇒ v, =
𝑚!v!+ +𝑚"v"+
𝑚! +𝑚"



Elastic Collisions

• Both momentum and kinetic energy are conserved.

!
"
𝑚!𝑣!+" +

!
"
𝑚"𝑣"+" = !

"
𝑚!𝑣!," + !

"
𝑚" 𝑣","

𝑚!v!+ +𝑚"v"+ = 𝑚!v!, +𝑚" v",

• Since we are working in one dimension: 

• It is important to use the appropriate signs for 𝑣: 
positive if the particle move to the right and negative if it 
moves to the left.
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𝑚!𝑣!+ +𝑚"𝑣"+ = 𝑚!𝑣!, +𝑚" 𝑣",
!
"
𝑚!𝑣!+" +

!
"
𝑚"𝑣"+" = !

"
𝑚!𝑣!," + !

"
𝑚" 𝑣","



Elastic Collisions, Analysis

• Typically, there are two unknowns to solve for and so we need two 
equations.

• The kinetic energy equation can be difficult to use. With some algebraic 
manipulation, a different equation can be used:

𝑣!" − 𝑣#" = −(𝑣!$ − 𝑣#$)

• This equation, along with conservation of momentum, can be used to 
solve for the two unknowns. If these two unknows are the final velocities:

𝑣!$ =
𝑚! −𝑚#

𝑚! +𝑚#
𝑣!" +

2𝑚#

𝑚! +𝑚#
𝑣#"

	𝑣#$ =
2𝑚!

𝑚! +𝑚#
𝑣!" +

𝑚# −𝑚!

𝑚! +𝑚#
𝑣#"

• It can only be used with a one-dimensional, elastic collision between two 
objects. 23



Example 9.4: The Executive Stress Reliever

An ingenious device that illustrates conservation of momentum and kinetic 
energy is shown in Figure. It consists of five identical hard balls supported by 
strings of equal lengths. When ball 1 is pulled out and released, after the 
almost- elastic collision between it and ball 2, ball 5 moves out, as shown in 
Figure (b). If balls 1 and 2 are pulled out and released, balls 4 and 5 swing 
out, and so forth. Is it ever possible that when ball 1 is released, balls 4 and 5 
will swing out on the opposite side and travel 
with half the speed of ball 1,as in Figure (c)?
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Solution:
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Given:
𝑚! = 𝑚 , 𝑣!" = 𝑣,  𝑣!$ = 0 
𝑚# = 2𝑚, 𝑣#" = 0	,  𝑣#$ = 𝑣/2   

We investigate both the conservation of momentum and energy: 

The motion described cannot happen because it violates the conservation of 
energy.

𝑚!𝑣!" +𝑚#𝑣#" =	𝑚!𝑣!$ +𝑚# 𝑣#$

⇒ 𝑚𝑣!" = 	2𝑚𝑣#$

⇒ 𝑣 = 2
𝑣
2

⇒ 𝑣 = 𝑣

1
2𝑚!𝑣!"$ +

1
2𝑚$𝑣$"$ =

1
2𝑚!𝑣!#$ +

1
2𝑚$ 𝑣$#$

𝑚𝑣!"$ = 2𝑚𝑣!#$

𝑣$ = 2
𝑣$

2$

⇒	𝑣$ ≠
𝑣$

2
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Example 9.5: Carry Collision Insurance
An 1800-kg car stopped at a traffic light is struck from the rear by a 900-kg 
car. The two cars become entangled, moving along the same path as that of 
the originally moving car. If the smaller car were moving at 20.0 m/s before 
the collision, what is the velocity of the entangled cars after the collision? 
Solution:
Given:
𝑚! = 900 kg   𝑣!" = 20	𝑚/𝑠	
𝑚# = 1800 kg , 𝑣#" = 0,  𝑣$ =? ?    
The magnitude of the total momentum of the system before the collision is 
equal to that of the smaller car because the larger car is initially at rest. 

Pi = Pf
𝑚!𝑣!𝒊 = (𝑚!+𝑚#)𝑣$

𝑣$ =
𝑚! 𝑣!𝒊
𝑚! +𝑚#

=
(900)(20)
900 + 1800

   
   = 6.67 m/s
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Example 9.6: The Ballistic Pendulum
The ballistic pendulum is an apparatus used to measure the speed of 
a fast-moving projectile such as a bullet. A projectile of mass m1 is 
fired into a large block of wood of mass m2 suspended from some 
light wires. The projectile embeds in the block, and the entire system 
swings through a height h. How can we determine the speed of the 
projectile from a measurement of h? 
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Solution:
Because the projectile imbeds in the block, we can categorize the 
collision between them as perfectly inelastic. 

𝑣$ =
𝑚! 𝑣!𝒊
𝑚! +𝑚#

the total kinetic energy 
𝐾$ =

!
#
(𝑚!+𝑚#) 𝑣$#

Substitute the value of 𝑣) into 𝐾, expression 

𝐾$ =
𝑚!
#𝑣!"#

2(𝑚! +𝑚#)

This kinetic energy of the system immediately after the collision is 
less than the initial kinetic energy of the projectile as is expected in an 
inelastic collision. 



29

We define the gravitational potential energy of the system 
Uf = 0

UC = (m1 + m2)gh. 

Apply the conservation of mechanical energy principle to the system:
 
     Kf + Uf = KC + UC 

-'
($'%

(

"(-'/-()
+ 0 = 0 + (𝑚! +𝑚")gh

Solve for v1i: 

𝑣𝟏𝒊 =
𝑚! +𝑚"

𝑚!
2𝑔ℎ



9.5 Collisions in Two Dimension

Two-Dimensional Collisions

Identifying the object

Indicating initial 
or final values

The velocity component

• The momentum is conserved in each of the directions 𝑥 and 𝑦.

𝑚!𝑣!"/ +𝑚#𝑣#"/ = 𝑚!𝑣!$/ +𝑚# 𝑣#$/
𝑚!𝑣!"0 +𝑚#𝑣#"0 = 𝑚!𝑣!$0 +𝑚# 𝑣#$0

• Use subscripts for the velocity in the following order:

𝑣!"/

If the collision is elastic, use conservation of kinetic energy as a second equation
- Remember, the simpler equation derived previously can only be used for 

one-dimensional situations.
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Two-Dimensional Collision, Example

• Particle 1 is moving at velocity v$( and particle 2 is at rest.

• In the 𝑥-direction, the initial momentum is 𝑚$𝑣$(.

• In the 𝑦-direction, the initial momentum is zero.
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Two-Dimensional Collision, Example, cont.
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• After the collision, the momentum in the:

-  𝑥-direction is:
𝑚!𝑣!$ cos 𝜃 + 𝑚#𝑣#$ cos𝜙

- y-direction is:
𝑚!𝑣!$ sin 𝜃 − 𝑚#𝑣#$ sin𝜙

• The conservation of momentum in the 𝑥 and 𝑦 direction gives: 

𝑚!𝑣!" = 𝑚!𝑣!$ cos 𝜃 + 𝑚#𝑣#$ cos𝜙

                          0 = 𝑚!𝑣!$ sin 𝜃 − 𝑚#𝑣#$ sin𝜙

• If the collision is elastic, apply the kinetic energy equation.

1
2
𝑚!𝑣!"# =

1
2
𝑚!𝑣!$# +

1
2
𝑚#𝑣#$#

• This is an example of a glancing collision



Example 9.8: Collision at an Intersection

A 1500-kg car traveling east with a speed of 25.0 m/s collides at an intersection 
with a 2500-kg van traveling north at a speed of 20.0 m/s, as shown in Figure. 
Find the direction and magnitude of the velocity of the wreckage after the
collision, assuming that the vehicles undergo a perfectly inelastic collision (that 
is, they stick together).

33

Given:
𝑚! = 1500kg
𝑚$ = 2500kg
𝑣!") = 25	m/s
𝑣!"* = 0
𝑣$") = 0
𝑣$"* = 20m/s





Solution:
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The collision is perfectly inelastic:

𝑣!#) = 𝑣$#) = 𝑣#) = 𝑣# cos 𝜃
𝑣!#* = 𝑣$#* = 𝑣#* = 𝑣# sin 𝜃

Conservation of momuntem on x Conservation of momuntem on y

𝐯𝐟

𝑣!" = 𝑣! cos 𝜃

𝑣!# = 𝑣! sin 𝜃

𝑚!𝑣!") +𝑚$𝑣$") = 𝑚!𝑣!#) +𝑚$ 𝑣$#)

                 𝑚!𝑣!") = (𝑚!+𝑚$)𝑣# cos 𝜃

                 (1500)(25) 	= (1500 + 2500)𝑣# cos 𝜃

   3.75×10, = 4000	𝑣# cos 𝜃 (1)

𝑚!𝑣!"* +𝑚$𝑣$"* = 𝑚!𝑣!#* +𝑚$ 𝑣$#*

                𝑚$𝑣$"* = (𝑚!+𝑚$)𝑣# sin 𝜃

                 (2500)(20) = (1500 + 2500)𝑣# sin 𝜃

       5×10, = 4000𝑣# sin 𝜃 (2)



35

From equation (2):

           5×10, = 4000𝑣# sin 𝜃

⇒ 𝑣# =
5×10,

4000 sin 53.1°

⇒ 𝑣# = 15.6m/s

Dividing equations (2) on (1):

           5×10) = 4000𝑣$ sin 𝜃
     3.75×10) = 4000	𝑣$ cos 𝜃

⇒ 1.33 = tan 𝜃	

⇒ 𝜃 = tan1! 1.33

⇒ 𝜃 = 53.1°
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Vector method: 
Given:
𝐯!" = 25Ni m/s 
𝐯$" = 20Nj m/s
𝐯!# = 𝐯$# = 𝐯# =? 

Magnitude:

⇒ 𝑣# = 9.375$ + 12.5$

⇒ 𝑣# = 15.6m/s

Direction:
 

⇒ 𝜃 = tan-!
12.5
9.375

⇒ 𝜃 = 53.1°

𝑚!v!" +𝑚$v$" = 𝑚!v!# +𝑚$ v$#

𝑚!v!" +𝑚$v$" = (𝑚! +𝑚$) v#

v# =
𝑚!v!" +𝑚$v$"
𝑚! +𝑚$

v# =
(1500)25Ni + (2500)20Nj

1500 + 2500

v# =
3.75×10,Ni + 5×10,Nj

4000

v# = 9.375Ni + 12.5Nj



Definition

• There is a special point in a system (a group of particles or 
an extended object.), called the center of mass.

• When an external force is applied to the center of mass, 
the system moves translationally as if the force were 
applied to a single particle of mass M located at the center 
of mass
- M is the total mass of the system

• One method to determine the center of mass is by 
applying forces at different points. The center of mass is 
the only point that allows the system to move 
translationally and not rotationally. 
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9.6 The Center of Mass

Example 
• Consider a mechanical system consisting of 

a pair of particles that have different masses 
and are connected by a light, rigid rod.

• The center of mass of the system is located 
somewhere on the line joining the particles 
and is closer to the particle having the larger 
mass.

- A force above the CM causes the system 
to rotate clockwise (a).

- A force below the CM causes the system 
to rotate counterclockwise (b).

- A force at the CM causes the system to 
move translationally (c).
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Center of Mass for a System of particles, Coordinates   

• The 𝑥 coordinate of the center of mass 
of the system in Figure is :

𝑥34 =
𝑚!𝑥! +𝑚"𝑥"
𝑚! +𝑚"

• We can extend this concept to a system of many particles with masses 
𝑚+ in three dimensions. The 𝑥 coordinate of the center of mass of 𝑛 
particles is defined to be:

𝑥34 =
𝑚!𝑥! +𝑚"𝑥" +⋯+𝑚5𝑥5

𝑚! +𝑚" +⋯+𝑚5
=
∑+5𝑚+𝑥+
∑+5𝑚+

=
	∑+5𝑚+𝑥+

𝑀

=
1
𝑀2

+

5

𝑚+𝑥+

• 𝑀	is the total mass of the system
39



• Other coordinates can be calculated similarly:

𝑥23 =
1
𝑀
!
"

4

𝑚"𝑥" , 	 𝑦23 =
1
𝑀
!
"

4

𝑚"𝑦" , 𝑧23 =
1
𝑀
!
"

4

𝑚"𝑧"

40

• From the coordinates we can find the center of mass position 
vector:

�⃗�23 = 𝑥23	Bi + 𝑦23	Bj + 𝑧23	Zk

• Substituting the values of the coordinates: 

�⃗�23 =
1
𝑀
!
"

4

𝑚"𝑥" Bi +
1
𝑀
!
"

4

𝑚"𝑦" Bj +
1
𝑀
!
"

4

𝑚"𝑧" Zk

�⃗�23 =
1
𝑀
!
"

4

𝑚"[𝑥" Bi + 𝑦"Bj + 𝑧" Zk]

�⃗�23 =
1
𝑀!

"

4

𝑚" �⃗�"

�⃗�" ≡ 𝑥"Ni + 𝑦"Nj + 𝑧" Zk]



Center of Mass for an Extended Object

• Consider the extended object as a system 
containing large number of particles each of 
mass Δ𝑚" and coordinates 𝑥", 𝑦" and 𝑧". The 
Center of mass for the 𝑥 coordinate for 
example is approximately: 

𝑥23 ≈
1
𝑀
!
"

4

Δ𝑚"𝑥"	

• To find the center of mass precisely, we let the number of particles 𝑛 
approaches infinity. Hence, the size of each element Δ𝑚" approaches zero :

𝑥23 = lim
56!→8

1
𝑀
!
"

4

Δ𝑚"𝑥" =
1
𝑀
=𝑥	𝑑𝑚	
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• Other coordinates can be calculated similarly:

𝑥23 = !
9∫𝑥	𝑑𝑚	,	 	 	𝑦23 = !

9∫𝑦	𝑑𝑚	,	 	 𝑧23 = !
9∫ 𝑧	𝑑𝑚	

• The position vector is: 
�⃗�./ =

1
𝑀
^ �⃗�𝑑𝑚	



Center of Mass for Symmetric and Irregular Shaped Objects

• The center of mass of any symmetric object 
lies on an axis of symmetry and on any plane 
of symmetry
- If the object has uniform density

• To find the center of mass for an irregularly 
shaped object: 
1. Suspend the object from one point
2. Then suspend from another point
3. The intersection of the resulting lines is 

the center of mass
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Quick Quiz 2:

• A baseball bat of uniform density is cut 
at the location of its center of mass as 
shown in Figure. Which piece has the 
smaller mass?

a)  the piece on the right 
b)  the piece on the left 
c) both pieces have the same mass 
d)  impossible to determine
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Example 9.10: The Center of Mass of Three Particles  
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A system consists of three particles located as shown 
in Figure. Find the center of mass of the system. The 
masses of the particles are 𝑚! = 𝑚" = 1.0 kg and 𝑚6
= 2.0 kg.

𝑥23 =
𝑚!𝑥! +𝑚#𝑥# +𝑚:𝑥:

𝑚! +𝑚# +𝑚:
=

1 1 + 1 2 + (2)(0)
1 + 1 + 2

= 0.75m

𝑦23 =
𝑚!𝑦! +𝑚#𝑦# +𝑚:𝑦:

𝑚! +𝑚# +𝑚:
=

1 0 + 1 0 + (2)(2)
1 + 1 + 2 = 1.0	m

�⃗�./ = 𝑥./	Ni + 𝑦./	Nj

⇒ �⃗�23 = 𝑥23	Bi + 𝑦23	Bj = [0.75Bi + 1.0	Bj]m



9.6  System of Many Particles

Velocity and Momentum of a System of Particles
• The physical significance of the center of mass is that we can describe the 

motion of the system in terms of velocity, momentum and acceleration of 
the center of mass of the system.

• The velocity of the center of mass of a system of particles with a constant 
total mass 𝑀 is:

𝐯23 =
𝑑�⃗�23
𝑑𝑡 =

1
𝑀!

"

4

𝑚"
𝑑�⃗�"
𝑑𝑡 =

1
𝑀!

"

4

𝑚" 𝐯"

• The momentum can be expressed as

𝑀𝐯23 =!
"

4

𝑚" 𝐯" =!
"

4

𝐩" = 𝐩;<;

• The total linear momentum of the system equals the total mass multiplied 
by the velocity of the center of mass
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Acceleration and Force of a System of Particles

• The acceleration of the center of mass can be found by 
differentiating the velocity with respect to time

𝐚34 =
𝑑𝐯34
𝑑𝑡

=
1
𝑀
2
+

5

𝑚+
𝑑𝐯+
𝑑𝑡

=
1
𝑀
2
+

5

𝑚+ 𝐚+

• The acceleration can be related to a force

𝑀𝐚34 =2
+

5

𝑚+ 𝐚+ =2
+

5

�⃗�+

• If we sum over all the internal forces, they cancel in pairs and the 
net force on the system is caused only by the external forces
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Newton’s Second Law for a System of Particles
• Since the only forces are external, the net external force equals the total 

mass of the system multiplied by the acceleration of the center of mass:
!�⃗�=>; = 𝑀𝐚23

• The center of mass of a system of particles of combined mass 𝑀 moves 
like an equivalent particle of mass 𝑀 would move under the influence of 
the net external force on the system.
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Impulse and Momentum of a System of Particles
• The impulse imparted to the system by external forces is

𝐈 = Δp;<;

• The total linear momentum of a system of particles is conserved if no net 
external force is acting on the system

𝑀𝐯23 = p;<; = constant when!�⃗�=>; = 0



Example 9.14: The Exploding Rocket 
A rocket is fired vertically upward. At the instant it reaches an altitude of 1000 m and 
a speed of 300 m/s, it explodes into three equal fragments. One fragment continues to 
move upward with a speed of 450 m/s following the explosion. The second fragment 
has a speed of 240 m/s and is moving east right after the explosion. What is the 
velocity of the third fragment right after the explosion?
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Given:
𝐯𝐢 = 300Bj m/s 
𝐯𝟏𝒇 = 450Bj m/s
𝐯𝟐𝒇 = 240Bi m/s 

𝐯𝟑𝒇 =?
Mass of the rocket:

𝑀
Mass of each fragment: 

𝑀/3

𝐩" = 𝐩 #

⇒ 𝑀𝐯𝐢 =
𝑀
3 𝐯𝟏𝒇 +

𝑀
3 𝐯𝟐𝒇 +

𝑀
3 𝐯𝟑𝒇

⇒ 𝐯𝐢 =
1
3𝐯𝟏𝒇 +

1
3𝐯𝟐𝒇 +

1
3𝐯𝟑𝒇

⇒ 𝐯𝐢 −
1
3𝐯𝟏𝒇 −

1
3𝐯𝟐𝒇 =

1
3𝐯𝟑𝒇

⇒ 𝐯𝟑𝒇 = 3𝐯𝐢 − 𝐯𝟏𝒇 − 𝐯𝟐𝒇

⇒ 𝐯𝟑𝒇 = 3 300Nj − 450Nj − 240Ni

⇒ 𝐯𝟑𝒇 = −240Ni + 450Nj m/s





9.8 Rocket Propulsion 

Rocket Propulsion
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• The operation of a rocket depends 
upon the law of conservation of linear 
momentum as applied to a system of 
particles, where the system is the 
rocket plus its ejected fuel.

• This system is isolated; therefore, the  
ejection of the fuel causes the rocket to 
compensate by accelerating in the 
opposite direction.   

• Note that the mass of the ejected fuel 
changes with time. We denote it by 
Δ𝑚.



Rocket Propulsion
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• We use the following symbols: 

- 𝑀: mass of the rocket.
- Δ𝑚: mass of ejected fuel.
- 𝑣: the velocity of the rocket.
- 𝑣): velocity of ejected fuel.
- Δ𝑣: Change of velocity due to ejected  fuel

• The initial mass of the rocket plus all its 
fuel is 𝑀 + Δ𝑚.

• The initial momentum of the system is 

𝑝+ = 𝑀 + Δ𝑚 𝑣
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• After the fuel (Δ𝑚) is ejected with a velocity 𝑣D, the 
velocity of the rocket (𝑀) increases to 𝑣 + Δ𝑣.

• The Final momentum of the system is 

𝑝$ = 𝑀 𝑣 + Δ𝑣 + Δ𝑚 𝑣 − 𝑣D

• From the conservation of linear  momentum 

𝑀 + Δ𝑚 𝑣 = 𝑀 𝑣 + Δ𝑣 + Δ𝑚 𝑣 − 𝑣D

⇒ 0 = 𝑀Δ𝑣 − 𝑣𝒆Δ𝑚

⇒ 𝑀Δ𝑣 = 𝑣𝒆Δ𝑚

• We take the limit as 𝑡 → 0, this lets Δ𝑚 → 𝑑𝑚: 

𝑀𝑑𝑣 = 𝑣𝒆𝑑𝑚

• The increase in the ejected mass corresponds to an equal
 decrease in the rocket mass. 

𝑑𝑚 = −𝑑𝑀



Rocket Propulsion

52

• Integrating:
⇒ 𝑑𝑣 = −𝑣𝒆

𝑑𝑀
𝑀

=
'!

'"
𝑑𝑣 = −𝑣𝒆=

9!

9" 𝑑𝑀
𝑀

⇒ 𝑣 g
𝑣$
𝑣" = −𝑣𝒆 ln𝑀 g

𝑀$
𝑀"

⇒ 𝑣$ − 𝑣" = 𝑣𝒆[− ln𝑀$ + ln𝑀"]

⇒ 𝑣$ − 𝑣" = 𝑣𝒆 ln
𝑀"
𝑀$

• The increase in rocket speed is 
proportional to the speed of the 
escape gases (𝑣𝒆).

• The increase in rocket speed is 
also proportional to the natural 
log of the ratio 𝑀+/𝑀,.
- So, the ratio should be as 

high as possible, meaning 
the mass of the rocket 
should be as small as 
possible and it should carry 
as much fuel as possible.



Thrust

53

• The thrust on the rocket is the force 
exerted on it by the ejected exhaust 
gases.

𝑇ℎ𝑟𝑢𝑠𝑡 = 𝑀𝑎 = 𝑀
𝑑𝑣
𝑑𝑡

• From :
𝑑𝑣 = −𝑣𝒆

𝑑𝑀
𝑀

• Multiplied by 𝑀 and divided by 𝑑𝑡, we 
get 

𝑀
𝑑𝑣
𝑑𝑡

= −𝑣𝒆
𝑑𝑀
𝑑𝑡

• Combining the two equations, 
we get 

𝑇ℎ𝑟𝑢𝑠𝑡 = 𝑣𝒆
𝑑𝑀
𝑑𝑡

• The expression

𝑑𝑀
𝑑𝑡

 is called the burn rate.



Example 9.17:
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A rocket moving in space, far from all other objects, has a speed of 3.0×10:m/s 
relative to the Earth. Its engines are turned on, and fuel is ejected in a direction 
opposite the rocket’s motion at a speed of 5.0×10:m/s relative to the rocket.
a) What is the speed of the rocket relative to the Earth once the rocket’s mass 

is reduced to half its mass before ignition?
b) What is the thrust on the rocket if it burns fuel at the rate of 50 kg/s?

Given
𝑣" = 3.0×10:m/s 

𝑣D = 5.0×10:m/s 

𝑀$ =
1
2𝑀"

𝑑𝑀
𝑑𝑡

= 50 kg/s

Solution: 

a)   The final speed: 𝑣$ − 𝑣" = 𝑣D ln
9!
9"

⇒ 𝑣$ = 𝑣" + 𝑣D ln
𝑀"
1
2𝑀"

⇒ 𝑣$ = 3.0×10:m/s + (5.0×10:m/s ) ln 2

⇒ 𝑣$ = 6.5×10:m/s
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Solution: 

b)  The thrust is : 

 𝑇ℎ𝑟𝑢𝑠𝑡 = 𝑣𝒆
F9
F%

 𝑇ℎ𝑟𝑢𝑠𝑡 = (5.0×10:m/s)(50 kg/s )

 𝑇ℎ𝑟𝑢𝑠𝑡 = 2.4×10)N


