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[Linear Momentum and Collisions
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9.1 - Linear Momentum and Its Conservation

e

C= mx« Sy LSl
Definition k m/s

* The linear momentum of a particle, or an object that
can be modeled as a particle, of mass m moving with a
velocity V is defined to be the product-of the-mass-and
velocity:

—

p =mv

* The terms momentum and linear momentum will be

used interchangeably. L -
P — O

B m= 9 V= 1

p = My V i



Linear Momentum
’__.\—

* Linear momentum 1s a vector quantltV

-

"'-\S_,—-J' okS' u.s_aﬂ-) ((’_r‘“ '3\5\
 Its direction is the same as the direction of the Veloc1ty

* The dimensions of momentum are ML/T (Mass - Length/

Time)“ P-___—_-m\(: )\/\L/T.

A=l A e
 The SI units of momentum are kg - m /s

* Momentum can be expressed in component form:

K Dy = MUy, Dy = Mmvy, p, = muv,
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Newton’s Second Law and Momentum 2 F=m

=
* The linear momentum can be related to the resultant force acting

on a particle through Newton’s second law:

ZF=m& _ -
JU Eﬁ—mﬁ—mdv d(mv) dp
ZF=r TE I dt — dt
e 2 oLl aleas, nah
dmv Q) =
r d‘[_, P :>2ﬁ=d_p (?_,)\d..a_——au.s\__-v (__r—D
dt 5F= aE.t

* The time rate of change of the linear momentum of a particle is
equal to the net force acting on the particle: .
adC © RIale3 O o 2 W MO U_,,_g\ =R > J s

- ThlS is the form in which Newton presented the Second Law.
- Itis a more general form than the one we used previously.
- This form also allows for mass changes.
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Derivation
,:‘a'd.é “')-‘;’ '-'-"(_J;'J” f\‘a‘J
* Consider an 1solated system with two masses:

- My moves at a velocity v v; due to a force F21
exerted on it by m,.

- m, moves at a velocity v, due to a force F;
exerted on 1t by m4.

* From Newton’s third law:

Com A2 5% R R
(;;:A_—Skq:.a 1 =—F21

ot

:F)12+F)21=0

Mo

wo = O 9 2Ll (e U odlvr w st 8
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Derivation, cont.

* From Newton’s second law:

— —¢
mlal + mzaz — O

o

oo ) ,
S :@(mlvl+m2_vz)=0

= ml‘_f)l ~+ mz‘_f)z

P, + £,

—
—

constant

-y

(L

O O

lr!z. T I'-'—Z;l =G

* Hence, for an isolated
system, the sum of the

quantity @22 for each

particle 1s conserved —> >3 e

* This 1s the reason for the
definition of linear
momentum.

S&
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9.2 Analysis Model: Isolated System (Momentum) s

PV Lo & .
Conservation of Linear Momentum v/l ,
$%
£

*  Whenever two or more particles 1n an 1solated system
interact, the total momentum of the system remains
constant.

Piot = constant ={ .
G W@ S
* The momentum of the system is conserved, not necessarily
the momentum of an individual particle. o
= - A\
¢ s, s G "’}F et 2
* This also tells us that the total momentum of an 1solated
system equals its initial momentum or final momentum.
P I
Ptot = Ptoti = Ptot f = constant




Conservation of Linear Momentum, cont.

* For two particles, conservation of momentum can be
expressed mathematically 1n various ways: gy,
- Vector form:

P1i T P2i = P1f T P2y
MmN o MaVeg = MUViE ™Mo Vo f ‘
Pf"" L = ﬁon[

- Component form:
P MYy M2Ver = lelF +M zV;)L

( & N
P1ix T P2¢x f plfx T pix ﬁf7+ ﬁ‘)’ = ﬁpy T @57
P1iiy T P2iy = Pify T P2fy

kpliz t D2iz = P1fz T P2fz

A

* Remember: Conservation of momentum can be applied to

systems with any number of particles. —u st =221
CPEN AT e & s




Example 9.1: The Archer

A 60-kg archer stands at rest on frictionless ice and fires a 0.030-kg
arrow horizontally at 85 m/s. With what velocity does the archer
move across the ice after firing the arrow?

Given

m1=60 kg, vll' = 0, vlf =?
m2=0030 kg, Vi = O, vzf = 85m/s
Solution

From the conservation of momentum
m}y’lﬂi + MZi = M V1r + My Uyy
=0 =0

0 =myvyr + my vyf

MV = —My Vyf
S —m, sz _ —(003)(85)
1/ my 60

={ 15 = —0.042m/s ;




Va.F =85
m/s

/[’J'J/LOLA

Ra\-a F
ML+ M2 = Vg My Vg
O = 60(7/,;) + ©.03 ((85)

50— 65

Vif- -(0.03)(85) =-0.0425 m/s
§6
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9.3 Analysis Model: Nonisolated System (Momentum)

Derivation

*  Knowing the change in momentum caused by a force 1s
useful in solving some types of problems. From Newton’s

Second Law:
A

. D - Ql_e.
F=% E‘F e
[ap=(zFde

* Integrating, ‘c} -PL' - /é /-_CJE'

- Py ty .
VeagaAs® T L dﬁ=f DL jéFdE
e \E_p:':”l jof; t;
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Impulse RN

* The integral 1s defined as the impulse,j_ , of the force
acting on an object over the time interval At =ty — ¢;

S b
1=f Eth
t.

L

« The impulse of the force acting on a particle equals the
change in the momentum of the particle.

. © =) = aou)
P_—: ko /< . ~ (z"j\ \_,fJ:‘J‘"
1 =x<9m/s I =Ap
» sl
——b Thi.s exXpresses the impulse-momentum theorem ; J
.. which 1s equivalent to Newton’s Second Law o2
P

=

L

11



Impulse, cont. a0,

* Impulse 1s a vector quantity. e o1 Oo—

- The magnitude of the impulse 1s equal to the area under
the force-time curve.
- The direction of impulse is the same as the direction of

change 1n momenta. @
* The force may vary with time.

* Dimensions of impulse is the same
as momentum.
nomer

* Impulse 1s not a property of the
particle, but a measure of the change
in momentum of the particle. ;

. Eo
; /
LS s oA (_(_4\53?0\:»9_:-33;9») (a)
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Impulse and Time-Averaged Force

* Because the net force imparting an impulse to a particle can
generally vary in time, it 1s convenient to define a time-averaged

net force:
> F
Area = (% F),y, Al
i) =L ["Yia
= — t
2F) =xl, 2.
avg
: : (SF) T
* The impulse 1s then expressed as —
i= (2 r?> At

avg

—

2007 Thamace Higher Educatien

* This would give the same impulse as the time-varying force does.

I_—_Iéth— = Z2FAt — F.At .

avs



Impulse Approximation

* In Impulse Approximation, it 1s assumed that one force
acting on a particle acts for a short time but 1s much greater
than any other force present.

* This approximation 1s especially useful in analyzing
collisions. o> (o

* This force will be called the impulsive force. The impulse
will then be calculated by:

I=FAt

The particle 1s assumed to move very little during the
collision. Hence, p; and EE represent the momenta
g Q& immediately before and after the collision.

14
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Problem Analysis

07 e e~

( ekl U)./'fJ:‘-';'
Isolated system Non-isolated system
bP=@ - PL'
ptot = constant > I = Apiot s mpluse
Impulsive Force Average Force
2 F F = f F i
ext = = At z =1
~ avg
1319'\5\0993\ T=400P = PF "?C' = MYy -mVy

— FAZ 15



Example 9.3: How Good Are the Bumpers?

In a particular crash test, an automobile of mass 1500 kg collides with
a wall, as shown in Figure. The initial and final

velocities of the automobile are ¥; = —15.0i m/s and \_/’f = 2.60i m/s,
respectively.

Before

a) If the collision lasts for 0.150 s, find the
< 1mpulse caused by the collision and the

average force exerted on the automobile.
F

b) What if the car did not rebound from the
wall? Suppose the final velocity of the
car 1s zero and the time interval of the
collision remains at 0.150 s. Would that
represent a larger or a smaller net force
on the car?

After

)
v

4

+2.60 m/s

oG
\oﬁf\\—f\'x

(a) 16



= ]soe k9

Y= —I5Cms Vp = 260 wmss
Ol = 5.9

o) . bP: /Oﬁ _Rzm@_mz
I =]/50e(2.6¢C + 15¢)

= 1500 ( [?6(._] = 26 U6 O, KImlis

2. Sl
1= FAe Es T
DL
= - 2&¢oo, — |7%€oool M
6-156 J
[Fed Xigy A

\/\/\__,/—\_/\_\——/\r“

v) m= |Sbo

Vo =~[s¢ Va - o At = oS

I: /072’ /Dt': m(@—;}—/a)

- /gbb(O— s ,S(')
= -2-25')(‘0“(-. kg fls

2
— LA = LT g5 M
0./




Solution:

Given

m=1500 kg

V; = —15.0i m/s
Ve = 2.601 my/s,
t = 0.150s

a) First we calculate the impulse:

= m‘_if — m‘_ii

= m(Vf—Vl)

= 1500(2.601 + 151)
= 1500(17.61)

= [2.64x10%1] kg.m/s

The average force:

-

R I
Favg — A_t
2.64x10%
~0.150
= 1.76x10°I N



b) The impulse when v¢ = 0: The average force:

-

N I
F e
I=Ap e A
=Pr —Pi 2.25%104
= mvy —my, ~ 7 0.150
= —myv; R
= —1500(—151) = 1.5%X10°1 N
= [2.25x10%1] kg.m/s

Comparing the two forces, we conclude that the force 1s

smaller in casé b.)




9.4 Collisions in One Dimension

o\ 3 _,TQL_‘“( Y’ska_.ﬁl\

Characteristics B -
T
*  We use the term collision to represent an  —— @— e
event during which two particles come close L
to each other and interact by means of 4T ’ T
forces = ‘He

- May involve physical contact, but must
be generalized to include cases with

interaction without physical contact.

* The time interval during which the velocity changes from its
1nitial to final values is assumed to be short.

=9 ,L.{ (Usad | da
 The interaction forces are assumed to be much greater than
any external forces present.
- This means the impulse approximation can be used.
A— AANN—rm——— :_(_ _ FAT

19



Types of Collisions

- T e Lo
o & % Elastic collision p.- B Inelastic collision
Ke=)sgp Y aoIO b gls 20
momentum and Kinetic energy are kinetic energy is not conserved
< 2.7~ conserved momentum is conserved
©b saZ Rt
el el ke + Ko
* Perfectly elastic collisions * If the objects stick
occur on a microscopic level. j-é’)’:' together after the
* In macroscopic collisions, -~ Xz“ collision, 1t 1s a perfectly
only approximately elastic ,J:—'f‘:g, inelastic collision.
collisions actually occur, QU" N PE ¥ astany

some energy 1s lost to

deformation, sound, etc. X ];; D

<=Lé_> Csy e Wy
e~/ Y Momentum is conserved in all collisions

o e {:m
0T P U WS 5 s — > 20



FaV I } l r-""‘ 5 A T
Perfectly Inelastic Collisions

Before collision

Vo,

Moy "l"m‘z.v'),c.": Mf"'“?)v,[_‘

 Since the objects stick together, they
share the same velocity after the

° ocity after the
collision, - 5 > A ot

* From the conservation of momenta:

ﬁ
Vi,

After collision
© MyVy; + My = (Mg + my)vy

myVy; + MyVy;
= Vf =
my, +m,

v

@ 2007 Thomson Higher Ecucation

<-,L;_') _,a_\ o:;;(:‘rn)kcc‘r__l\ (_!L__:;L}:@L;
N

21
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Elastic Collisions S oeslal ko= Kp

* Both momentum and kinetic energy are conserved.

— - — — Before collision
mqVy; + MyVy; = MVip + My Vor

—
Vi

1 2 , 1 2 _ 1 2 41 2

SUSKEY + S MaVap = My Vi + , M2 Vay -
. . . . . MoVl = m W Nf
* Since we are working in one dimension: " T = T Y
LV + Lmdlyc = %‘“M'f Aoy

\/'/
MUy + MeVUy = MV + MUy After collision
- —>
1 5 ) 1 s 1 2 1 2 Vi Vor
ng@u’)‘F oMoV = My Uiy +-My Uy 4—@
%K_’\J-\ :/\/\—;8\ =

* It 1s important to use the appropriate signs-{or-v:
positive 1f the particle move to the right and negative 1f 1t
moves to the left.

22



Elastic Collisions, Analysis

Typically, there are two unknowns to solve for and so we need two
equations.

The kinetic energy equation_can be difficult to use. With some algebraic
manipulation, a different equation can be used:

V1i — V2 = _(V1f — VZf)

This equation, along with conservation of momentum, can b¢ used to
solve for the two unknowns. If these two unknows are the final velocities:

N [EP R = BT W et
— . | _ :
Y7 \my+m,) 1 \my +m,/) -G =\~
; ‘93@:-'("‘-'\0}"'
/‘VOP Vop = ( - )V1i + ( : 1) Vi 6o £
my, +m, my; +m,

It can only be used with a one-dimensional, elastic collision between two
objects. Vs o o I 23




Example 9.4: The Executive Stress Reliever

An ingenious device that illustrates conservation of momentum and kinetic
energy 1s shown in Figure. It consists of five identical hard balls supported by
strings of equal lengths. When ball 1 1s pulled out and released, after the
almost- elastic collision between it and ball 2, ball 5 moves out, as shown in
Figure (b). If balls 1 and 2 are pulled out t and released balls él_andj swing
out, and so forth. Is it ever possible that when ball 1 is released, balls 4 and 5

out on the opposite side and trav

/!lll Y Y S (|

will swing out on the opposite side and travel
with half the speed of ball 1,as in Figure (¢)? J fz !f Tz Ti ! X

© 2007 Thot

This can happen
(b)

) [ ) [ ) T (O T

gl Ul

v/?
This cannot happen

(C) 24
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m;= m Ve = Y Vo=o C/LL\C’;
\ -

My = 2m Vo= 0 qug,:_'{i
P Bao LB Gy el

MU + MVl — m, z{f- el mL,Vi{
m V. x 0 = O —+ am W/

r/r/’v = 9./"/236
’2/=7~/"/ﬂ?/ Z)
V=v X -

- . a =

S
W Yy

B—

as/\wp\ e 20 50 L:,._,pé\.]:cx



Solution:

Given:
my=m, UV =, v =0
m, =2m, vy =0, Uy =v/2

We investigate both the conservation of momentum and energy:

=0 =0 -0 =0
1 1 1 1
myVy; + My = "}1//1;c T my Vyf §m1v12i + > V3 = Eml/l;+zm2 vzzf
= %’JU = Z%UZf my?, = 27%)12]“
v 2
>V = 2(—) v
2 v? = 22
=>V=7 12
= p? :/:7

The motion described cannot happen because it violates the conservation of

energy.
25



Example 9.5: Carry Collision Insurance

An 1800-kg car stopped at a traffic light is struck from the rear by a 900-kg
car. The two cars become entangled, moving along the same path as that of
the originally moving car. If the smaller car were moving at 20,0 m/s before
the collision, what is the velocity of the entangled cars after the collision?

Solution: _ ._.?: b
Given: n
my = 900 kg

™M

v1i = 20m/s i |BOCK Y
moy = 1800 kg R Vyi = 0, Uf =77 m,

The magnitude of the total momentum of the system before the collision is
equal to that of the smaller car because the larger car is initially at rest.

7= Ve
lF‘M‘ ¢ = \’)-‘ra\- F Pl- _ Pf
r%{.;-rn 2o = (m.'rﬂ’ly V)a myvy; = (Mg +my)vy
LG T (900)(20)
Q00 K20 =(1800+60)V Uf T 1 T T 900 + 1800

Up o H00K2O _ &gz vys
F (7366 Ta05) = 6.67 m/s .




Example 9.6: The Ballistic Pendulum

The ballistic pendulum is an apparatus used to measure the speed of
a fast-moving projectile such as a bullet. A projectile of mass m; 1s
fired into a large block of wood of mass m, suspended from some
light wires. The projectile gmbeds in the block, and the entire system
swings through a height 2. How can we determine the speed of the
projectile from a measurement of /? Ve= M+ m/té  2er

m,+mz

\

: Vt

e

my + my
Via R j
g — —_— h
\f”_,‘ Y
=

© Cengage Learning/Charles D. Winters
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Fosd WA T ap ) Sele = S\ Y (i l\o oy
o =AMy
Solution: M I h S ; PSR I

Because the projectile imbeds in the block, we can categorize the
collision between them as perfectly inelastic.

o = my Vi Vi < m (Ve
4 my; +m; (m-j— m/
the total kinetic energy |
_1 2 2
Kr =5 (mi+my) vy k= é’ (M\'\'mz{m‘ Vi
My m )
Substitute the value of V¢ into Ky expression k= L(m /} v o
- i 2 .
2 CW\ vt MZ)ZI
K. — mivy; 2,.,%
f_Z(m1+m2) k”: Lk ,Ul

2(vmermz)

This kinetic energy of the system immediately after the collision is
less than the 1nitial kinetic energy of the projectile as is expected in an

inelastic collision. mn? — (mam 2) 9 In
— é/

2.(-”‘1-!-".:‘] "



ﬁ‘z :/‘5— (_m\drma) ‘9 h

e : my
We define the gravitational potential energy of the system

ur=? V, = 2 (merm) o,

Uc = (m; + my)gh. i

Apply the conservation of mechanical energy principle to the system:

Kf+Uf=K-+ U, Vi = J2gh (mamy
144N
mivi;

2(my+my)

Solve for vy;:

m;+m
V1i =( 1 Z)N/Zgh

mq

29
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9.5 Collisions in Two Dimension

facx = Rorgx
ﬂmy = PiaF)(‘

* The momentum is conserved in each of the directions x and y.

Two-Dimensional Collisions

M Vqjx + MpVsix = M Virx +m,; Vo fx

» Use subscripts for the velocity in the following order:
Viix

Identifying the object The velocity component

Indicating initial
or final valnes
If the collision 1s elastic, use conservation of kinetic energy as a second equation
- Remember, the simpler equation derived previously can only be used for
one-dimensional situations.

30



AY: A sn8 ‘ _/l_’o"
7 Pg = ACosB

Two-Dimensional Collision, Example
» Particle 1 is moving at velocity V4; and particle 2 is at rest.

* In the x-direction, the 1nitial momentum 1s mqvy;.
VefSrah

¢ In the y-direction, the initial momentum is zero.#}
DT (?-I,S‘ et Sl

E(C — P)( g. o Vii

MV = m, V,; (05 &+ ma Vot Cos o

o8 ZTERUSG

f © 2007 Troemcn Figpes €

O — V|f'5"ﬂ0 + N,y (Uzp's‘-"t@

31




Two-Dimensional Collision, Example, cont. vy sing B A

After the collision, the momentum in the: vy cos 0

x-direction is:
MqV15 COS O + myv;,r coOS @

di . . Vg sin gt ——=
y-direction 1s: Vos

myVsr sin 6 — MmaVsr sin d) ____(b) After the collision

The conservation of momentum in the X and y direction gives:
s
M Vy; = MyVqfCOS O + MyVyr COS P /

0

MyV1rsin @ — myv, s sin g v

If the collision is elastic, apply the kinetic energy equation.

1 1 1 Qsles 55—
§m1v12i =§m17712f+§m277§f . Jj:w\
- e ——e— P —— LY —bul—g "
- . . o o))
* This is an example of a glancing collision Z

u_/\./\_/—"\/\./w 32



Example 9.8: Collision at an Intersection
C

A 1500-kg car traveling east with a speed of 25.0 m/s collides at an intersection
with a 2500-kg van traveling north at a speed of 20.0 m/s, ag shown in Figure.
Find the direction and magnitude of the velocity of the Wff_:c%de after the
_collision, assuming that the vehicles undergo a perfectly inelastic collision (that
is, they stick together).

Given:

m, = 1500kg
m, = 2500kg
Viix = 25 m/s
Viiy = 0

V2ix = 0

vzl’y = 20m/s

® 2007 Th Higher




\M-}p
N & AR

MVicx m%* = (termy ) Yp csSO

My Nicx — (W\H-rwz)Q/(-’Cbgg

\Ses (25) = (VSpo+2s68) Vp CosO| . ..V

m\%V ,\-mz_q/gl')/ = f)’”\"Tf“Z.) q/jﬁ' 5’7!@

ma2 (Vz(‘)/ = (M a-—]-ﬂ’ll._jvf S/"’l&

(2‘50@20 = (/5'00-1 (sos) 7/;5015)

3FsSs6e = UOOO q_{_f(@ég —--@
560000 = 4006 Vi Sin@® ---¢D 24

S5cooco0 :_40[4 (V/{ $in B
3 F 506 q/(?éo% Cos G

tan® = .33 G = éamﬂl[/,%)
e 50

T 3l (2 Nsles P Loses
7/} - 37560 - 5.6 m/C

_‘——’_—_‘_——-
yooo (Cos $3 1)



Solution:

Vfy = Uy Sinf -
The collision is perfectly inelastic: T i
Vifx = Vafx = Vgx = Ur COSO - >
Vify = Vypy = Vg, = UpSinf Vrx = vy cost
Conservation of momuntem on x Conservation of momuntem on y
=0 =0
MqVqjx + mZ%x = M V1fx + My Vypy mlv%+ My Vyiy = My V1fy + My Vypy
My V1ix = (My+my)vf cos 6 My Vziy = (M1+My)Vf Sin 6
(1500)(25) = (1500 + 2500)vf cos 6 (2500)(20) = (1500 + 2500) v sin &

3.75%10* = 4000 vy cos 6 (1) 5x10* = 4000v; sin 6 (2)

34



A = 3('*‘“.‘-
(B\=J 35+u*

Dividing equations (2) on (1):

5x10% = A/GO/Qvf sin @
3.75x10% = 4000 Vr COs 0

= 1.33 =tané

= 6 =tan"11.33

=0 = 53.1°

57

— -y
9_{-9\«1. =

p—
—_—

= 5

From equation (2):
5x10* = 4000vy sin 6

B 5x10%
~ 4000sin53.1°

:>Uf

= vy = 15.6m/s | «~

<L

Vie=250  Vzo= 204
MV, +MVal = Crrvt—’c""z) ’Vjp‘
1) "]{(_' -+ 1 Ve

(_f"li—rMZ)

’V?g—:.

)500 (15¢) + 2500 (29) )
£ (/so6 + 2500 )

p - 77500C + 0005 )
- Hob O

35



U = 37500 ¢ 4 0220

Vector method: Yb00 H oo
Given: "VF.L G.3#s LU + |2.5)|—>
Vi = 251 m/s

‘_7>2i:2_>01m/5_> ) ’U,t? qu;_g_l_ |2.52 = 15&

Vlf = sz = Vf =

 getan
_ N N S Magnitude:
myVy; + MV = My Vip + My Vpr

myVy; + myvy; = (Mg + my) vy

= vy =/9.3752 + 12.52

5 myVy; + MyVy, = vy = 15.6m/s
F= my +m,
) . Direction:
_ (1500)25i + (2500)20
Y =T 1500 + 2500 /125
0 : = 0=t (9 375)
L 3.75%10% + 5x10%] :
Ve =
! 4000 = § = 53.1°

v, = 9.3751 + 12.5]

36
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O

* There 1s a special point in a system (a group of particles or
an extended object.), called the center of mass.
- \;:J'\ alSu\ S

Definition

*  When an external force 1§ applied to the center of mass,
the system moves translationally as 1f the force were
applied to a single particle of mass M located at the center
of mass

- @s the total mass of the system

* One method to determine the center of mass 1s by
applying forces at different points. The center of mass 1s
the only point that allows the system to move
translationally and not rotationally. e S oar w -
e U D5 N g s &7 .
Y iV 5> En Ny PG S F Y Db




9.6 The Center of Mass

Example

* Consider a mechanical system consisting of r=,

a pair of particles that have different masses , | 4 )
and are connected by a light, rigid rod. | A

* The center of mass of the system 1s located (a)
somewhere on the line joining the particles

and 1s closer to the particle having the larger \ \ )
CM &® . \\1\ N

mass.

—

- A force above the CM causes the system (b)

to rotate clockwise (a).
- A force below the CM causes the system ’ J J

to rotate counterclockwise (b). M G o O
- A force at the CM causes the system to &) |

move translationally (c). ©

"‘f.\}'.z: \ :J_J:’bj}l ) 38




Center of Mass for a System of particles, Coordinates
y

The x coordinate of the center of mass

of the system in Figure is :

XcM =

mix, + myx,

m; +m,

€<—XCM

A
=
Y

*  We can extend this concept to a system of many particles with masses
m; in three dimensions. The x coordinate of the center of mass of n
particles 1s defined to be:

v

° M is the total mass of the system

Myxy + MyXy + -+ Mmpx, DI MiX;

2imx;

XcM =

B Z?ml B M

My Xy M2y msX3x el

M

39
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* Other coordinates can be calculated similarly:

)CC\/\« n %M ’ZCN

n
1 1
XcM = MZ miXxi, YcMm = 2 m;yi, ZcM = MZ m;z;
i i

* From the coordinates we can find the center of mass position

vector: '(; = XCMC ‘\’Vc ...j ‘\7(...‘:

Icy = Xem 1+ yem ) +zem K
T

* Substituting the values of the coordinates:
n n n
. 1 . 1 . 1 P
I'cm = MZ mix;l + MZ m;y;j + MZ m;zi'k
l l l

> 1 2 2 o~
ey = ME mi[x; 1+ y;j + ziK]
7

n
- 1 S
fem =3y /7, Ml
i

>
)

xl-i + yli + Zik]

D
i
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Center of Mass for an Extended Object

* Consider the extended object as a system
containing large number of particles each of
mass Am; and coordinates x;, y; and z;. The
Center of mass for the x coordinate for
example 1s approximately:

Xem = — ZAm Xi

* To find the center of mass premsely, we let the number of particles n

approaches infinity. Hence, the 31ze of each element Am; approaches zero :

XcM = grgOMZAmxl— fxdm

« Other coordinates can be calculated similarly: ¢ Ay

-TN’LS\Lt
Q_,:-_;\[\ 9 cu-'e-‘\t"‘w

1 1
Xem =5, J x dm, Yem = J ydm,

=

ZCM=%dem

* The position vector is: R 1 f R
ey = i rdm

o<

IRV
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densi+y
Center of Mass for Symmetric and Irregular Shaped Objects
7 (! o~

%

* The center of mass of any symmetric object
lies on an axis of symmetry and on any plane

of symmetry i
o If the object has uniform density -
SOMIN B LT 3 S RS 7 Ssb Of(.._.n.lx(&-_-'aji "
’,.;,g To find the center of mass for an irregularly #
shaped object: |
[

1. Suspend the object from one point _ < (&le

2. Then suspend from another point < _'(1 a2 OS Ghe

3. The intersection of the resulting lines 1s ;
the center of mass 1 Center of

‘@ Lij\) ] mass
m \' f 5’ _3'0 © 2007 Thomson HigherEducaton
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Quick Quiz 2:
PGPSV PP
* A baseball bat of uniform density 1s cut
at the location of its center of mass as

shown in Figure. Which piece has the
smaller mass?

a) the piece on the right
b) the piece on the left
both pieces have the same mass

d) 1mpossible to determine l

——— e

NCTV a4
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Example 9.10: The Center of Mass of Three Particles

yim)
—

A system consists of three particles located as shown %‘
in Figure. Find the center of mass of the system. The

masses of the particles are my = m, = 1.0 kg and m5™ "
= 2.0 kg.

o L
N % 2 \(\C'Y\ - 035(" al i(s l :
Icm = Xcm 1+ Yem ) M

vl

1 Nig: xim)
2 3

2

L
maxy +maxy +maxs _ (DM + D@D+ @)@ _ .o
my + m, + my 1+1+2 :

XcM =

—

myy; + mpy; + Mays _ (1)(0) + (1)(0) + (2)(2) _

— .0Om
yeu my + my + ms 1+1+2

= Fom = xem 1+ yem ] = [0.751 + 1.0 jim
Hem= Mixy 4+ M2 Ao M3z X3 _wyW+) @W<c2(c). 0. F5m

M\—*mz.ﬁ.m‘} \ V%2

7/(: v Yl Y M3y 2 %&)%qo)*'zju =1n
™= MMz em (4 \+ 2




9.6 System of Many Particles
P& as_—

Velocity and Momentum of a System of Particles

* The physical significance of the center of mass 1s that we can describe the
motion of the system in terms of velocity, momentum and acceleration of
the center of mass of the system.

“ o\ | L oas

* The velocity of the center of mass of a system of particles with a constant

total mass M is:

n
dXem drcm dr; 1 o | Vom = mVitmMaVa
\r#d{ VcM_ dt Mzml M : m; Vi MmwMaz
M\f!?/
* The momentum can be expressed as P _ i mV, = fp{
S o

— ml\/‘_\mz\/-. -

P =MV N < R
Mvey = Emi"i =:Zpi = Ptot
i i ‘:ﬁ‘l‘Pz -

* The total linear momentum of the system equals the total mass multiplied
by the velocity of the center of mass

a4 ﬁa#;'r"\(':"?‘fb@\ Fr&; ob—2




L ORI\ 7ol
Acceleration and Force of a System of Particles A= St

NN S s
* The acceleration of the center of mass can be found by
differentiating the velocity with respect to time

n
- dVCM dVl B 1 .
dcMm = mi— Ty L, A
i

* The acceleration can be related to a force St = ma

n n
MﬁCM:Zmiaizzﬁi Em: 2¥L
[ [

WM+

* If we sum over all the internal forces, they cancel in pairs and the
net force on the system is caused only by the external forces

46



Newton’s Second Law for a System of Particles

Since the only forces are external, the net external force equals the total

mass of the system multiplied by the acceleration of the center of mass: .
¢ L X eN= \QL:S'U\ Mlb_,nj

m_:},\l\o;gi\ zFextzMaCM -

The center of mass of a system of particles of combined mass M moves
like an equivalent particle of mass M would move under the influence of
the net external force on the system.

Impulse and Momentum of a System of Particles 1 = NP

The impulse imparted to the system by external forces is : V'

p p y y Spoo Jorrels
I = AProt Dp=s 0
A =0
The total linear momentum of a system of particles is conserved if no net
external force is acting on the system

Mvcy = Prot = constant (wheny EXt = ) -



Example 9.14: The Exploding Rocket

. At the instant it reaches an altitude of 1000 m and

A rocket 1s fired verti

T

a speed of 300 m/s, it explodes into three equal fragments. One fragment continues to

move upward with a speed of 450 m/s following the explosion. The second fragment
has a speed of 240 m/s and is moving east right after the explosion. What is the

velocity of the third fragment right after the explosion? IR
— Pi =Py
. L, M M M
Given: = Mv; = 3 Vif + 3 Vef + 3 V3f
v; = 300j m/s
Vi = 450) m/s L1, 1, 1,
_)1f 1 =V = §V1f+§V2f+§V3f
Vo = 2401 m/s
Vaf =7 L1, 1. 1,
Mass of the rocket: = ViT 3V T3 V2r = 3 V3r
M - - - -
Mass of each fragment: = V35 = 3Vj — V15 — Vyy
M/3

= V3¢ = 3(300j) — (450j) — 240i

= Vg = |—2401 + 450j|m/s

4




use) M/2
g P- — PP,

\J)‘q@ a—> 2:/0; L
M/ /(VL ::g_/-v,; +—3MV2.9 '\'%‘éﬂ
300y = 45044 240 L 2 Vi
: 3 3 3
800 | :
¢ 900 J = YSo)+ 240 —1-\/3;
M

(VA Jo6, 45 —2¢al
Nae = Ysof._ 240l
N30 = =240l +uso)

M/ s



9.8 Rocket Propulsion

) \
. I3
Rocket Propulsion Y W’

* The operation of a rocket depends
upon the law of conservation of linear
momentum as applied to a system of
particles, where the system i1s the
rocket plus its ejected fuel.

» This system is isolated; therefore, the
ejection of the fuel causes the rocket to
compensate by accelerating in the
opposite direction.

* Note that the mass of the ejected fuel
changes with time. We denote it by

|Am.] R TRV Rl
AR TR FENTRNY N 29




Rocket Propulsion

*  We use the following symbols:

- M: mass of the rocket.
- Am: mass of ejected fuel.
- v: the velocity of the rocket.

- Ve: velocity of ejected fuel. 3= (M+ AmV
- : . = m)v
- Av: Change of velocity due to ejected fuel B.Z. f/— / )
St TS _ Z)”uﬂ .\ ) (a)
* The initial mass of the rocket plus all its____ / a

fuel is M + Am.

* The initial momentum of the system is

pi=WM+Am)vy |~

2 :’Jf
i W u&\
_9\":’
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After the fuel (Am) 1s ejected with a velocity v,, the
velocity of the rocket (M) increases to v + Av.

25N 220 ;& Sy T
The Final momentum of the system is I/o M
Am -
=M+ Av) + Am(v — v.) 4——%::1_:_'.‘._}
wi—=—  san v
? ek, : 4 —— s
From the cons’ervatlon of linear momentum 2 AT
v+ AV
M+ Am)v =M@ + Av) + Am(v — v,) (b)
= 0 = MAv — v,Am
= MAv = v,Am _padQsas
We take the limit as t — 0, this lets Am - dm: p\! .
— lew @ ¥2
Mdv = vedm - am ==

The increase in the ejected mass corresponds to an equal

decrease 1n the rocket mass. j dv= ﬁ/_%_ d N
dm = —dM & -



Rocket Propulsion

- Integrating: * The increase in rocket speed 1s
o dy = —p am proportional to the speed of the
°M escape gases (V).
Vf Mf dM
j dv = —ve | —- * The increase in rocket speed is
v; m; M :
‘ ‘ also proportional to the natural
I L M; log of the ratio M; /M.
Vi € M; - So, the ratio should be as
high as possible, meaning
YTV vﬁ[’@/lf +M] the mass of the rocket
M; should be as small as
=V Vi = Ve lnﬁf possible and it should carry
as much fuel as possible.

22/\&N GYNT g gl S pS) Dl s s
‘~5i oS At % s 5 W
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Thrust 9\';,;) 3

The thrust on the rocket is the force * Combining the two equations,
exerted on it by the ejected exhaust we get
gases.
2 Lc,! FACIOTE Je=
dv Thrust = (Ve —— ‘
Thrust = Ma = M — dt
— dt
From - * The expression & ﬂ-"’\:s.:‘t"
dM /
dv = —v, 73 dM /9
dt

Multiplied by M and divided by dt, we
get is called the burn rate.

dv dM

dr e dr
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M¢
g7/
Example 9.17: He = Y-

i
A rocket moving in space, far from all other objects, has a speed of 3.0X103m/s
relative to the Earth. Its engines are turned on,/and fuel is ejected in a direction
opposite the rocket’s motion at a speed of 5.0%103m/s relative to the rocket.
a) What is the speed of the rocket relative to the Earth once the rocket’s mass

is reduced to half its mass before ignition? <°9%! WV et s zas Lis
b) What 1s the thrust on the rocket if 1t burns fuel at the rate of 50 kg/s?

Given Solution: 9-]&%
_ 3
vi = 3.0x107ms a) The final speed: v; —v; = v In— i
v, = 5.0x103m/s M
= Vf =vl-+veln1 l
1 >M;

= vp = (3.0x10°m/s ) + (5.0x10°m/s ) In 2

= vy = 6.5x10°m/s
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_ d M
50) /Hf'\(uuﬁ — S’Y@ '_CZ‘,:_'_
Solution:
b) The thrustis : — l 5)(‘0?)(5(_-,!
Thrust = veC;—A: - 2.5x [O N
= |(5.0x103m/s) (50 kg/s )|
= 2.4x10*N
7 _(_q_.‘:- -t 2
VYo = 3 16~ m/< Vez = %18 Mg
Ve -V.-= Ve K
3
Ve 318" = 5xpp” S 2

Vp .

>
57(103_£-2 A= 3YXI10 _-:-cagg.—,:?

—~ E946y 10
m/s/ s



