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/ e Chapter 3
KINEMATICS OF FLUID FLOW

1. Types of Fluid Flow.
1.1 Real -or -Ideal fluid. .
1.2 Uniform -or -Non-uniform Flows.
1.3 One, Two -or -Three Dimensional Flows.
1.4 Rotational -or -Irrotational Flows.
2. Circulation -or -Vorticity.
3. Stream Lines, Flow Field and Stream Tube.
4. Velocity and Acceleration in Flow Field.
5. Continuity Equation for One Dimensional Steady Flow.

6. Stream Function & Velocity Potential
7. Reynold’s Number
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Fluid mechanics

Is a study of the behavior of fluids, either at rest (fluid statics)
or in motion (fluid dynamics).

. We now turn our attention to fluids in motion.

* Instead of trying to study the motion of each particle of the
fluid as a function of time.

*  We describe the properties of a moving fluid at each point as
a function of time.

Fluid Dynamics

Dynamics Statics

The laws of Statics that we have
learned cannot solve Dynamic
Problems There 1s no way to solve for

the flow rate, or Q. Therefore, we need
a new dynamic approach to Fluid N
Mechanics. —0=Fow




 Fluid Kinematics: deals with the motion of fluids without

considering the forces and moments which create the motion.

We define field variables which are functions of space and time

Pressure field, P = I3(x V,2,t)

Velocity field V=V (x,,21)
17 X,,Z, t@ @x Y,Z, t)®+@x,y,z,t)@
Acceleration a= C_i(xa Vs Zat)

field a :@(x,y,z,t(x,y,z,t)@(x,y,z,t)@



Types of fluid Flow

1. Real and Ideal Flow:

If the fluid is considered frictionless with_zero viscosity it is called|ideal.

>° Jlsco ¥ -
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Injreal [fluids the viscosity is considered and shear stresses occur causing conversion of

mechanical energy into thermal energy

Friction =0

Energy loss =0

Ideal

2. Steady and Unsteady Flow

Steady flow occurs when
condltlons of a pomt in a flow

> Ideal Flow ( n =0) EE—

~ Friction # o
Real Flow ( u #0)

7/ Energy loss #0

|Real i

o()
E)
o()

field 0 )
fime (v, p, H.....changes w.r.t. \\\
time) |
. H=constant
b -~
~ Steady Flow with respect to time  y—.,nstant

*Velocity is constant at certain
position w.r.t. time

= O_steady
# O unsteady T
H # constant
Y
|
V + constant

('{/ Unsteady Flow with respect to
time. Velocity changes at
certain position w.r.t. time
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3. Uniform and Non uniform Flow fSEN SN e powunclo-

Y Y
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X | X
Uniform Flow means that the Non- uniform Flow means
velocity is constant at certain 0 ( ) uniform velocity changes at certain time
time in different positions o(x) in different positjions (depends on
(C.IOQSH’F depend on any 8( ) 0 Non-uniform dimension X or y or z)
dimension x or y or z) (x)
Oné, Two and three Dimensional Flow y
- l % l > ‘
T —— o L = X
One dimensional flow means that the flow Two dimensjonal flow means that the flow
velocity is function of one coordinate velocity is function of two coordinates
V=f{XorY orZ ) V=H#{XY orX,Z orY,7Z)

Three dimensional flow means that the flow velocity
is function of there coordinates V = ff X, Y.2)




Summary

Uniform Flow " :: ~ Non-Uniform Flow
, » - -
> > >
Steadvy Flow : | Unsteady flow

=

constant dropping
level level
constant velocity ( variable velocity )—b :
'—.-..
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Uniform Flow, Steady Flow

» Uniform flow: flow Velocityvis the same magnitude and
direction at every point in the fluid.

(/ V; Non-uniform: If at a given instant, the velocity is not the same
at every point the flow. (In practice, by this definition, every fluid
that flows near a solid boundary will be non-uniform - as the
fluid at the boundary must take the speed of the boundary, usually
zero. However 1f the size and shape of the cross-section of the
stream of fluid 1s constant the flow 1s considered uniform.)

Ve

”/; Steady: A steady flow is one in which the conditions (velocity,
pressure and cross-section) may differ from point to point but DO
NOT change with time.

/3} » Unsteady: If at any point in the fluid, the conditions change
with time, the flow 1s described as unsteady. (In practice there 1s
always slight variations in velocity and pressure, but if the
average values are constant, the flow 1s considered steady.)
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Uniform Flow, Steady Flow

Steady uniform flow:

Conditions: do not change with position in the stream or with time.
Example: the flow of water in a pipe of constant diameter at
constant velocity.

Steady non-uniform flow:

Conditions: change from point to point in the stream but does not
change with time.

Example: flow in a tapering pipe with constant velocity at the inlet-
velocity will change as you move along the length of the pipe
toward the exit.

Unsteady uniform flow:

At a given instant in time the conditions at every point are the
same, but will change with time.

Example: a pipe of constant diameter connected to a pump
pumping at a constant rate which is then switched off.

Unsteady non-uniform flow:

Every condition of the flow may change from point to point and
with time at every point.
Example: waves in a channel. 8




Velocity Profile

Flow in a pipe

Consider the flow in a pipe in which water is
flowing. At the pipe wall the velocity of the
water will be zero. The velocity will increase as
we move toward the center of the pipe. This
change in velocity across the direction of flow

1s known as velocity profile.

Because particles of fluids next to each other are
moving with different velocities there are shear
forces in the moving fluid 1.e shear forces are
normally present in a moving fluid. On the other
hand, 1f a fluid 1s a long way from the boundary
and all the particles are travelling with the same
velocity, the velocity profile would look
something like this:

e v

Velocity profile in a pipe.

- v

Velocity profile in uniform |

9



 And there will be no shear forces present as all particles have zero
relative _velocity. In practice we are concerned with flow past

solid boundaries; airplanes, cars, pipe walls, river channels etc.
and shear forces will be present.

» Fluid flow can be steady or unsteady.

Two fluid particles in a stream. At '@

different locations in the stream the Q> ¥ = +0.5 m's

particle velocities may be different, as &m

indicated by V, and V,. Fluid particles
——————

1 In steady flow the velocity of the fluid particles at any point is

constant as time passes.

1 In Unsteady flow It exists whenever the velogity at a point in the
fluid changes as time passes.

10
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» Flow Characteristics «wy 9= J 55, el

When fluid is in motion, its flow can be
characterized as being one of two main types:

1. if each particle: of the
fluid follows a smooth path, such that the paths
of different particles never cross each other, as
shown 1in figure 3.

Figure3. Laminar flow around an
automobile in a test wind tunnel

* In steady flow, the velocity of the fluid at any
point remains constant in time.

2. Above a certain critical&ed, fluid flow becomes
turbulent. Turbulent" flow 1s 1rregular flow
characterized by small wind pool-like regions,
(figure 4). =\, 2

The smoke first moves in laminar flow at the
bottom and then in turbulent flow above

Figure 4. Hot gases from a cigarette

made visible by smoke particles.
11



of Laminar and Turbulent Flow

a/fizzmmzzr flow:
all the particles proceed along smooth parallel

N Typical
paths and all partlcles on any path will follow . _ particles
1t Wi 1atio , path
Hence all particles have a velocity only in the

j direction of flow. Laminar flow
ﬁurb ulent Flow:
the particles move in an urregular manner 5y .
through the flow field. ~ N N\
e : v : : ™~ Particle
Each particle has superimposed on its mean " paths
velocity fluctuating velocity components M
both transverse to and in the direction of the %~ 7
.\ j net flow. Turbulent flow

/ Transition Flow: )
-S,\y exists between laminar and turbulent flow.
In this region, the flow is very unpredictable and often

changeable back and forth between laminar and turbulent states. 12
minat




(a) Laminar flow of the Firehole River at Yellowstone;
(b) transition from laminar to turbulent flow in rising smoke;
(c) turbulent flow at the Upper Falls on the Yellowstone River.

Turbulent flow: 1s an extreme kind of unsteady flow and occurs
when there are sharp 0b§tacles or_lgends in the path of a fast-
moving fluid. i s, g A sus -

In turbulent flow, the velocity at a point changes erratically from
moment to moment, both in magnitude and 1n direction.

13



Because the motion of a real fluid 1s complex and not yet fully
understood, we make some simplifying assumptions in our approach.

Many features of real fluids in motion can be understood by considering
the behavior of an ideal fluid.

Properties of an ideal fluid

In our model of an ideal fluid, we make four assumptions:

Non-viscous fluid. In a non-viscous fluid, internal
friction 1s neglected. An object moving through the fluid

experiences no viscous force.

Steady _flow. In Steady flow, we assume that the
velocity of the fluid at each point remains constant in

timi LW 3G AL ey
Incompressible fluid. The density of an Incompressible

fluid 1s assumed to remain constant in time.
YAy, /9 D -t
Irrotat'lonal ﬂow Fluid flow 1s irrotational if there is no

angular momentum of the fluid about any point. H




* A flow field is best characterized by its velocity distribution.
« A flow is said to be one-, two-, =" b R v sl
or three-dimensional if the flow [ = 1—= | — | -- [ -= [ -~

] = = TFully developed

velocity varies in one, two, or three dimensions, respectively.

* However, the variation of velocity in certain directions can
be small relative to the variation in other directions and can
be ignored.
The development of the velocity profile in a circular pipe. V = V(r, z) and thus the flow is two-
dimensional in the entrance region, and becomes one-dimensional downstream when the
velocity profile fully develops and remains unchanged in the flow direction,ug'_).
Rotational and irrotational flows /5_
r © o1t )
The rotational is the ayerage value of rotation of two — (/\_ Rotational flow
lingg in the flow. N
. . i -
(1) If this average = 0 then there is no rotation and .
the flow is calledflrrozazlona! flow] aetvge =0 fﬂ o
S —— - Ol rotating \,J’AV .\\ s'/ =
- E} ----- - ® (AL I :
e -0)----- - ) D tat | flow
§ ; i @ E\Dln'ol;nionul outer flow region éi:\ ‘\\i':f/ j frotationa
Velocity profile S “\ pa
Rotational boundary layer region (Tj
/' _._/’ ___’/' ..... Streamlines and velocity profiles for
S -*-/:@""@""'Qu ?5’12” B ‘.":L‘i;‘itci 'x‘l" ":".‘i

rotational. but ﬂow Bi otational 15

Y
5 % § wh > ot at tl ori .
Wall Fluid particles rotating St gir



L1 When the flow is steady, streamlines are often used

M Streamlme § )il 23 ’\

the trajectories of the fluid particles.

L1 A streamline is a line drawn in the fluid such that a tangent to the
streamline at any point is parallel to the fluid velocity at that
pOiIlt. /‘J:up NJ‘Q$/ at.S\é,._c. L},_Du—-l-ﬂ-

L1 In fact, steady ﬂow 1s often called streamline flow.

Figure shows the velocity vectors at three points along a streamline.

The fluid velocity can vary (in both
magnitude and direction) from point
to point along a streamline, but at any
given point, the velocity is constant in

Streamiine

-

-_A_‘Q&;.

)

time, as required by the condition of At any point along a streamline,

steady flow.

the velocity vector of the fluid
particle at that point is tangent to

the streamline. 16



Streamlines

Streamlines:

: : : Streamiines around @ moving car
* Are imaginary lines drawn to show the flow : |

of fluid.

i
] Py 4

* They are always parallel to the direction of j;f .'

flow. Fluid does not flow across streamlines

(1 This i1s diagram represents a set of
streamlines (blue lines).

L1 A particle at P follows one of these
streamlines, and its velocity  (v) 1s
tangent to the streamline at each point
along its path.

[] No two streamlines can cross each other.

Loy bole NP uae

The path taken by a fluid particle under steady flow is called a_streamline.

17



Streamline:

A Streamline 1s a curve that 1s everywhere tangent to it at any instant represents the
instantaneous local velocity vector.

d v — dj S Point (x + dx. y +dy) V

dx u d K 7
ur _v
dx dy W _ v _w
F— — ey —
in — general —for3—D d d y d =
u . A% . w . .
dx dy d= Stream line equation
' Where :
V — \/ U 2 4 Vz n Wz u Veloc%ty component %n -X- Flirec.tion
\W v velocity component in-Y- direction
w velocity component in -Z- direction
v u "X
) —

velocity vector can written as: V=ui +vj +wk

Where : 1, j, k are the unit vectors in positive X, y, z direction

18



Ltcaairal
recamtiube:
. Wt bde=rros
« Is a bundle of streamlines™ '}l
e fluid within a streamtube remain constant
and cannot cross the boundary of the streamtube.
mass 1n = mass out)

Streamlines

Streamtube

A streamtube consists of a bundle of
individual streamlines.

, In an incompressible flow field, a
streamtube (a) decreases in diameter
as the flow accelerates or converges
and (b) increases in diameter as the
®) flow decelerates or diverees.

oA 31 -,

Types of motion or deformation of fluid element

-
5 e | J \
’ mamem 0 -~
@ & 5 ' Linear translation
—_——_"0 OSSO -
Py \ :
ez | < Vo .
®) Q & > Rdtational translation
Fundamental types of fluid element B ,41[
motion or deformation: (a) translation, i '
() rotation, (c¢) linear strain, and e = bt . A .
(d) shear strain. LR el : — Linear deformation
LL 1 — - ]_ =
—_— _, 1.
e s 27
@ Vi /4 Angular deformation

T -— 19



Mass flow rate: (384 Jixa

sy
Continuity *

This principle of conservation of mass saya matter cannot be

created or destroyed.
This applied in fluids to fixed volumes, known as control
volumes (or surfaces) \

\

Mass flow in

Control
volume

&’ m = ’Z QLVZ" Mas;:w out

1ca/S

The mass of fluid per second (e.g., 5 kg/s) that flows through
a tube is called the mass flow rate.

If a fluid enters one end of a pipe at a certain rate (e.g., 5
kilograms per second), then fluid must also leave at the same
rate, assuming that there are no places between the entry and
exit points to add or remove fluid.

20
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Mass flow rate

e dm nmass
dt time taken to accumulate this mass

E

. fﬂ-z
A simple|example: [ I

An empty bucket weighs 2. 0kg. After 7 seconds of
collecting water the bucket weighs 8.0kg, then:

m= _é...- -0.%53
il ey = i = mass of ﬂu1d 1in bucket - "-";D/s
time taken to collect the fluid
~80-—-20
7
= 0857kg /s
Example: o5 L
If the mass flow rate 1s 1.7 kg/ s, how long will 1t take to fill a container
7 (1= as:
with 8kg of fluid? (t=?) e ntl]flss :
1mass 110w rate
p __..._ - _&_ yY-7 S 3
o [+ 3 =17

=47s 21
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Volume flow rate - Discharge.

More commonly we use volume flow rate
Also know as|discharge)

The symbol normally used for discharge is Q.

discharge, Q = volume of fluid _{ .2/

time A 7
_ VvV _ 2;{103 -5
Example: U & £ a5 ~ 812 r7/s

If the bucket above fills with 2.0 litres in 25 seconds, what 1s
the discharge?(Q=?)

Solution:

Q=2.0x10"m? 25s=0.00008 m’/s  discharge, Q= _
Q=0.08 s tme

volume of fluid

22



Consequently, if the density of the fluid in the above example is

-§-5-Q kg m 3’ then: dischisrge, D= X-oluntliilc;t tfluid G) - %
¢ mass of fluid
m = = g I+ - density < time Q = _{D—-
b 111ass t]O\V' rate f &
O =3 yn - density .
0.857 Q - m
JO ~ 850 --""""p

= 0001008 m> /s (m’ s™")

- O 857‘ ——— m’/Sz 1.008 <102 m’ /s
XL - .~ = 10087/ s

Discharge and mean velocity

If we know the discharge and the diameter of a
pipe, we can deduce the mean velocity

T e
AR s

Cylinder of fluid

23



Cross sectional area of pipe is A
Mean velocity is un,.

In time ¢, a cylinder of fluid will pass point X with

a volume Ax u,, xt. _
Um 227

s |
The discharge will thus be <5
_ volume _ A4 xu, x1 V
time [
O = A, = '3
Example: - N =7
. . . \ z K (O
If A=1.2 x 10 m? and discharge, Q is 2.4 1/s, what is the mean
. L e 2
velocity? (u. =?) mes,
u =L , Note how we have called this the mean velocity.
m A‘fl_ 1
24%1073 — N o
= 13x10>2 > This is because the velocity in the pipe is not
_ 7'6 /s | constant across the cross section.

m max 24
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The equation of continuity Py

A fluid moving with streamline flow through a pipe of varying
cross-sectional area. the volume of fluid flowing through A, in a

time interval At must equal the volume flowing through A, in
the same time interval. (Fluid is incompressible)

A.\'(_) Q 2q
M P.A Q2 - Vz/t
@) ( G = A,L,/t
T‘T =A,V,
Ql = VI/t Ax, , Yo : —
=A L /t PlAl lf__>| . = =
141 R |
= A, N l
Q=Q,
A, v;=A,v, = Constant

* This expression is called the equation of continuity.
* The product of the area and the fluid speed at all points along the
pipe is a constant for an incompressible (continuity principle).
25




Ideal fluid flowing through a pipe with changing cross-sectional

area.
The volume per unit time (Av/ A t) passing any /
vl

point in the pipe must be the same in all parts of the —— e
pipe or else we would somehow be creating or 4
destroying fluid. Thus, we get: A,v, =A,v,. A,

This equation is called the equation of continuity.

* When the end of a hose 1s partially closed | .+
off, thus reducing its cross-sectional area,
the fluid velocity increases.

* This kind of fluid behavior 1s described by the equation of continuity.

26



~  Equation of Continuity

IS
/ S - Mass flow rate ~ Am
f/ N L = =pA
;' b J -~ at posttion 1
N t — TERR
’ —’ .

Mass ﬂ.O'W rate _ Am
at position 2 Af

=4 p A v,=p,Av,

* If the density doesn’t change — typical for liquids — this simplifies
to: A LV = A )

* Where the pipe is wider, the flow is slower.

NS Al2 >
—l’—“.;;l \" V\ Al > Az but V2 > Vl
I >:J‘ ' 5
T 5L S an e S g s
Al A2 , 27



Mass Flow Rate and the Equation of Continuity

We will deal with laminar flow.

- . .
The mass flow rate 1s the mass that passes a given
point per unit time. The flow rates at any two

points must be equal, as long as no fluid 1s being
added or taken away.

This gives us the equation of continuity

p1A1v = pry Ay,

28



Now try this on a diffuser, a pipe which expands or diverges

as In the figure below,
I
ot i | 2m(g
&\ 43\6(‘)’” + L’ ol\j;\
{l‘:; "71) l
™z w (> | . qd2 = Uomm
‘ Selctionl Sectic;nZ Y2 =20
2 - “(20)2
If d;=30mm and d;=40mm and the velocity u,=3.0m/s.
U = Azl
: . . . A
?
What is the velocity entering the diffuser’ U - gfza)"' L2

|6 m/<
U = ns};/(’r)zg



»»'¢ Reynold’s number

Flow in a pipe or liquid

p: is the density of the fluid
V:is the mean fluid velocity
D: is the diameter

Q: is the volumetric flow rate

pVD VD QD
Re=m — = — = —
U % VA

w: 1s the dynamic viscosity of the fluid
v: is the kinematic Vel'éﬁj of the fluid

A: 1s the pipe cross-sectional area.

D 4
D
¢ i
— TN
= — — —> —> —
Low discharge

‘Medium discharge !
‘High discharge

Reynolds’ Results

A dimensionless number in fluid mechanics.

PN

30



The value of R determined the type of flow in the

experimental tubes: UD
H—O; Laminar Flow | %4
. 7| Laminar Flow: every fluid
: | molecule followed a straight path
- ~| that was parallel to the boundaries
@ of the tube.
oW
—> Transitional Flow
Transitional Flow: cvery fluid
molecule followed wavy but
parallel path that was not parallel
to the boundaries of the tube.
Flow
—> Turbulent Flow

Turbulent Flow: every fluid
molecule followed very complex
path that led to a mixing of the
dye. .



Reynolds found that conditions for each of the flow types
depended on:

1. The velocity of the flow (U) 2. The diameter of the tube (D)

3. The density of the fluid (p). 4. The fluid’s dynamic viscosity

o).

He combined these variables into a dimensionless combination
now known as the Flow Reynolds’ Number (R) where:

pud
Re=
U

_pUD
yz;

R

32



R:@ o Pud

H H
Flow Reynolds’ number is often expressed in terms of the

fluid’s kinematic viscosity (v; lower case Greek letter nu),
where: )

V= H (units are m?/s)
0
Rearranging: H = pU

Substituting into R: R = E@ ‘ R=_"

v 2005 X 1- c6Sx(S _ 0.02m(s

R - PUD L. PRI qagzx el
Y T = 0 pwo X \OOSX\0 — p.oo?
M JS°D 33 miS

9952 %\



Example: Given two pipes, one with a diameter of 10 cm and the

other with a diameter of 1 m, at what velocities will the flows 1n each

pipe become turbulent? 0 _ 2060
What 1s the critical velocity for R = 20007

UD
R=—=2000 SolveforU: [U= 2000v

v D

-3
H_ 1.005x10 —1.007x10°m?/s Distilled water
0 998.2 at 20°C.

Given: vy =

Solvefor D=0.1 mand D=1.0 m.

~2000v
D

Fora 0.1 m diameter pipe: |U For a 1.0 m diameter pipe:

_ 2000x1.007x107° - 2000%1.007x10°°
0.1 B 1

U =0.02m/s = 2cm/s U =0.002m/s = 2mn/s 24

U




Frictionless Flow Along Streamlines

Application of the second Newton’s law of motion
along streamlines of fluid flow leads to a very famous
equation 1n Fluid Mechanics, 1.e. the Bernoulli
equation.

There are four assumptions used to derive the equation
and these four assumptions must always be
remembered to ensure that 1t 1s used correctly,

1. The flow 1s nviscid or frictionless, 1.e. viscous effects
are negligible which is valid for low viscosity fluids
such as water and air,

2. The flow 1s steady, 1.e. the flow pattern 1s fully
developed and does not change with time,

35



Krictionless Flow along Streamlines

3. The flow 1s mmcompressible, which 1s valid for all
liquids and low speed gas of Mach 0.3 or below
since the change 1n gas density 1s less than 5%.

4. The flow considered 1s a/ong the same streamline, as
the wvariation of properties for fluild molecules
travelling in the same path can be simulated more
accurately through conservation laws of physics.

Jio @293l Lindnio gilgall 2llo ;o] g g .dlago dxgilll Dl i ol . IEBYI o JIs gl 23] e Lyl .1
clggllg clall

303l go 32l Vg JolKIL jehio ob 2l has i i« gl jiiwo ol 2l .2

o0 Jsl glo dic 1ic) dc pull Ladris Oljlally Wlguwll gaaz) puxo (olyisl gdg oluailll Ll yue oLyl .3
965 o Jol jlsdl @BUS b pusill oSy Cau> (03

yausi il @iladl Sl jo patbas uss Blae (Sas Cuo wpalswill badl juai Jeb ole ;95 yugyiall Gl =l .46
gl juall SLaSl Bas Guiled plaziwl @5 ST JShy jluall juii b



Bernoulli’s Equation

A fluid flowing through a constricted pipe with streamline

flow. The fluid in the section of length Ax;, moves to the
section of length Ax, .

The volumes of fluid in the two sections are equal.

A Yo

The speed_of water spraying from the end of a hose
increases as the size of the opening 1s decreased with thumb.
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Bernoulli’s Equation:

Yo P V=

e The sum of the prePssure, | oy | , and
gravitatiogg;dootential energy per unit volume has the same
value at all points along a streamline.

* This result 1s summarized in Bernoulli’s equation:

P +1/2 pVv? + p gy =constant

* For steady flow, the speed, pressure, and elevation of an
mcompressible and nonviscous fluid are related by an
equation discovered by Daniel Bernoulli (1700-1782).

S|

tl{ 2
|
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Bernoulli’s Equation

—~ Aly [
All ¥5
A, Py A fluid can also change its
¥ | A, height. By looking at the
P, Y2 work done as it moves, we
Y 1 Y ﬁnd:
(a) P + ipv* + pgy = constant
N — Al |+
. L This is Bernoulli’s equation.

One thing it tells us is that
as the speed goes up, the
pressure goes down.

) o 32 g ag 100 s B
‘ -

Copyright © 2005 Pearson Prentice Hall, Inc! 39



\

The Venturi tube P

The horizontal constricted pipe illustrated a _
in figure known as a Venturi tube, can be B E—
used to measure the flow speed of an 977" ="
incompressible fluid. Let us determine the 4

flow speed at point 2 1if the pressure 4

difference P,— P, 1s known.

g

. . -- Venturi Tube
. o ,w:"gl‘-?u“'-"',“f e Sl Piials
Solution:  Because the pipe 1s horizontal,

: . . | ¢ | 9
Y, = ¥, and applying Bernoulli’s equation: | £ + 5pv1° = Py + 5pus”

Pressure P, 1s greater Than the pressure P, since v, < v,. This

device can be used to measure the speed of fluid flow. P
P P, P> ]

V
|QV2_

Vi b

AI
A Venturi tube with air flowing through it 40



Applications of the Bernoulli Theorem

« Flow and the streamline under consideration are shown in
Fig. below. Here, using the Bernoulli equation, we can form a

relation between point (1) and point (2) as follows:

p T ep Vit pgz = py + Vap VP + pgz,

, P
. __J:‘Pvl':.
11 ﬁ ,, P9 Z
| s
vo, ; ; P,
¥ sy =PV

\/ Figure 5.4: Vertical jet flow from a large tank .P A = 2 41



Applications of the Bernoulli Theorem

At point (1), the pressure 1s atmospheric (p, = p,), or the gauge
pressure 1s zero, and the fluid is almost at rest (V; = 0). At
point (2), the exit pressure is also atmospheric (p, = p,), and
the fluid moves at a velocity V. By using point (2) as the
datum where z, = 0 and the elevation of point (1) i1s A, the
above relation can be reduced to: , @ feo=F

%

o+ Vep(0) + pgh=py + VapV2i+ pg(0)
pgh="Y%pV? Prefs !
Hence we can formulate the velocity V'to be E
Vi =e 4,20 P =0 2o

‘-.-t_%_-,"V.‘-\-ij, = Pz-l'*l.fv;-—b "ngz

V=" 2gh >
Poh 4PV
<

N =) 29n

42



. Irrotational flow
.\,,7-’? CAL Sp VP L2 ¥ U £
® e Irrotational flow means that no part of the fluid
rotates about its own center of mass.

.\,7

7+ Rotational motion of a small part of the fluid
would mean that the rotating part of the fluid
does have rotational energy, which 1s not

considered in ideal fluids. Sy
% 2%

~\7
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Rotation

Definition of rotation

A

A

------------------------------------------
.
aur®
--------
e

------------------

-----------------
---------

X1ly+Ay
Ay Time=t
Vx L ' _______________________
Yy AX A
V
y V
= Y lx+Ax
X

Assume V
oy < Vileoax

and V|, >V |

ROTATION = (V)

z

d a_|_ﬂ

Cdr\ 2

a4



Rotation

. s Ot
To Calculate Rotation tan o = % Time = ¢
W= (1], 8], ) o L
AX
(Vy 7, )At —(Vx\ e )At
a = arctan ~—— : Similarly S = arctan L yA 4
Y
d(a+ o + _
ROTATION = () = P — 1 lim ( P ) t+ AL P )L
dt 2 2 A0 At
14 =V | At Vx —V. At
arctan ( Porde 2 x) arctan ( y+Ay y)
Ax Ay
1) .. 1) ..
= (—j lim —[—j lim
2) 4%, At 2820, At
Ay =0 Ay — 0

For very small time and very small element, D,, D, and D, are
close to zero



Rotation

For very small q, (i.e.q~0) smf =6 cosf=1 —tanfA=0.

arctan 6= 6 ((Vy v, )A[ (Vy v, )At

. arctand A ¥/ A~ C o T

Ax Ax
(Va1 ) A (],a 21, ) 24 ’

arctan x+Ax x x+Ax 2 V _ ) @V
Ax Ax : Vprar Yl y

lim —lim . lim =
o At gy N Mo Ay O

Ay — 0 Ay — 0

V At
arctan ( > ~ x)
1 ) 1)..
w, =| — Iim —| — | lim
2 | A0 At 2 Ar—0 At

Ay —> 0 Ay —> 0

. . 1 8V 6V 1 —_—
—( 2 vy 9%, —[ = |(vx7
Simplifies to @, [2j { — } @, (Zj( <V)
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 Rotational Flow & Irrotational Flow:

The rate of rotation can be expressed or equal to the angular velocity vector(@ ):

1(ow ov -
g =—| — —— 1+
2\ o0y Oz

Note-

1

2

wx:

(

1 ow . ov
2\ oy Oz

=3 (5%%)

8wj - 1(ov oJu —
- J+—| ——— k
Oox 2{ox oy

The flow 1s said to be rotational if :
@, or w,or wz #* 0

The fluid elements are rotating in space
The flow is said to be irrotational if :

o = 0= 0 =0

The fluid elements don’t rotating in

= L e o
LEET) e ()
o o 8)7 =
* Vorticity (&): )
Vorticity 1s a measure of rotation of a fluid particle s o _ow
> Oz Ox

Vorticity 1s twice the angular velocity of a fluid

par w1 Cartesian coordinates:

=5 ow  Jv\- ou
L e e
ay 0Z 0z

ow

0x

)j.,.(fﬂ_ﬂ)/: - Z[ax _8y

ov ou

ax dy
- 47



A 7-{-:2&"0 ’_'
e Circulation (I'): - @ =y
a2 bs

The circulation (') is a measure of rotation and is defined as the V

line integral of the tangential component of the velocity taken around

a closed curve 1n the flow field.

F=<j& V - ds
2 —

— il
The flow 1s irrotational if / ®=0, &=0, F]—é
————
* For 2-D Cartesian Coordinates Y s
G 0 LY
F:J dF:udx+(v+—vdx)dy—(u+—udy)dx—vdy e
0x 0y >
ov JOu
—<ax—ay>dxdy i ) v
J D Ox
= < _ .area dx dy




[7 —_ C.lf'C(/lxa'é'\U"l

fo/f_'._.- el .o Py o J%
= U.L‘n(.t-(\f-\-av clf)d)’

— (w4 ‘:{j-%ﬁ))d\( — Ny

“:(_a_-\f——i(_‘}_, dé’d&

ol - TV e
>L_C)
=
7
el -

CL:Q}U -_;8_\_1-\-;_\/_0_'2_‘—**& g!-x 'fé.\_/.oié

Je a2t ax db 9y de¢ g7 de
& il .
an (st - Ll

A= Y ¢ udV 9V \ wdV

——.

Y X QAy 9‘2

= 2V :
- EE*(VV)



> Acceleration Field a=N= -éij-g—

 From Newton's second law,

I3 -~ 3 \f‘?— Vx y, 'Z/t)

particle particle™ particle
e The acceleration of the particle is the time _ AV riicte
. . . . a . =
derivative of the particle's velocity. particle dt

 However, particle velocity at a point 1s the same
as the fluid velocity,Lagrange Frame: a = a (1)

Eulerian Frame: we describe the acceleration in terms of position
and time without following an individual particle. This 1s analogous
to describing the velocity field in terms of space and time.

Particle A at
time 1

Vi = Vu(ra, 1) = Va[xa(2), ya(t), za(1), t]° X o

A fluid particle can accelerate due
to a change in velocity in time

Particle path

(“unsteady”) or in space (moving /
to a place with a greater velocity).




Acceleration Field: Material (Substantial) Derivative

dVA 8VA HVA dXA aVA dyA (:)VA dZA
ay(r) = = + + — + —=—
dt /at ox dt dy dt dz dt
/
time dependence spatial dependence
We note: Uy = dxA/d[ Vy = dyA/dt Wy = dZA/dt
Then, substituting: a, = IVa + u, Va + v, 9Va + W, Vs
ot ox 0z
: : : oV oV oV oV
The above is good for any fluid particle, so we drop “A”:a = " + u— - + v p + w P
0t )X )y )7
Writing out these terms in vector components:
ou ou u du : : :
xedirection: @ = o+ wo v o W Fluid flows experience fairly
direction: . _ P L B0 v large acc§lerat10ns or
Y BT T T Yy T Wy decelerations, especially
- direction: @, = % -~ u% + 04,2 | approaching stagnation points.
X ay 0z
Writing these results in “short-hand™ a = ll))\: N wol )02
oy
D 9 9 d d 0 )
where, U _ ()+u()+v,(—)+w€—) \/dx»\f”(
Dt o ox oy 0z y = udl
() _ o) o, 0. 08, v W

+(V-V)), VO=2i+2 G+ 2k
bt o 0= oy’ oz

50



Acceleration Field: Material (Total, Substantial,

Substantive) Derivative
2.5 uu? as FA V) O~ Sy *-“‘""‘JU'L‘

Applied to the Temperature Field in a Flow: T = T (x,y,2,1)
T V=V yzi)
The material derivative of any variable is the rate at which that variable
changes with time for a given particle (as seen by one moving along with
the fluid—Lagrangian description).
dT, 0T, N 0T, dx, N o7y dy, N o7, dz,

J

dt or ox dt dy dt Az dr
DT or T  orf = oT [ or =
=—4u—+v—+w— F—+V-VT ok

Dt ot 0x ady 0z ot ey =0

Acceleration Field: Unsteady Effects : 3
= =0

Consider flow in a constant diameter pipe, where the flowi1s 22

: ' : 2 aAVv -o
assumed to be spatially uniform: v = vy, (7) i v

\

A

‘W"‘ 00 ,
ot

2 Y YYVVYYYY

<
o~

&, wHHrv'rwlwv

<2
&

a‘/()’.‘
?l 51
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Acceleration Field: Convective Effects

The portion of the material derivative represented by the spatial
derivatives is termed the convective term or convective acceleration:

- It represents the fact the flow property associated with a fluid
particle may vary due to the motion of the particle from one point in
space to another. (Y - V)V

- Convective effects may exist whether the flow is steady or unsteady.

Siready -

Example 1: }.{"‘ NI Example 2:
Hot

u=yV,

e u=V,>V,
Water K—E R, = . .
I Tout > Tin — A 4 > LP',

heater\ i = 4

/ - — Py s gy

\ |_-Pathline . - x| -

R 1 J 1 gl e

/} l—

Cold TN B ou/ox > 0 du/dx < 0
_>|z‘—;——-/ Dt a, < 0
Tin a\‘ > O !

|/ \ l l

Acceleration = Deacceleration
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e

V= u(x,y,z,t)f+v(x,y,z,t)j’+w(x,y,z,t)/€

Mathematically the total derivative equals the sum of the partial derivatives

du = —dx+—dy +—dz+—4dz
e X oy = z
du ou ou dy ou ou
a, =— = + + + ——
dt ox\ dt oy . dr oz\dt ot
a. — @ 8u au 814
82 5t

Jﬁ:+viﬁ+wiﬁ JS‘L
y 1 % T_l_T

Convective component Local component
Similarly :
ah) ShY &y b
() — L —=~ + v —+ + w —+
<) ox (% o= or
M
<z :ug@—l—v@—l—wa@/—l— ZAly,
N oxc oy = or

2 2 2
CZI\/CZx—I—CZ y+az
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Example 2

Consider a hypothetical fluid velocity vector field given by:

V=Ct(x?—-y3)i —2Cxytj+3yk

(i) Isthe flow field steady or unsteady?
(ii) Obtain an expression for the acceleration vector a.

(iii) Evaluate the acceleration vector a at (x,y,z,t) = (1,1,1,1)
Yycz ' t(-2¢xuC?)y-Gc ¢

(77 CA/?.Sfeao/j U'\/_'/,ms ool

) Ay = QU v U4 VAU o L F
az

= CCx%2 y*) o chfgt y?) dxce

(=2 C2uif ) [pety ] +;/(0)

= C(x%9?) 4+ 2 L % (129y? ) 4 UCZxy™?
ax = UC*

Oy = B_if LAV 5 vV oW
2t 5% Y, 5z

= “2Cky 4+ 2P Yy - 4 C Tyt

-2C w2

—

%t'/ at"' dy ® o2

ha == — i Clyl = ge



Conservation of Mass (Continuity Equation)

opw
(ow+ dz)dxdy |- -
. z AN
( Mass can neither be created A 1 0 P pvf;‘,'-;-jdz)r'
z
nor destroyed ) | oo 7 oS
The general equation of 3> o+ 2P ) iz
continuity for three pu.dyds il — o
dimensional steady flow _’l/ . X ‘—
mz= LPdxdydz ’ o
y / / pr.dxdy
'S opv
(pov+ e dy).dx.dz
) Y
d-* “"‘5 ou dpu | =
Net mass in x-direction = Pudydz . (A1 + e dx).dy.dz = — . dx.dy.dz
9, 0
Net mass in y-direction= pvdx.dz - (pv+ g dy)dx.dz = — g dx.dy.dz

i . : 9,
Net mass in z-direction= ow.dx.dy - (pw+ apw dz).dxdy = — 8g)w dx.dy.dz
Z

z
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2 net mass = mass storage rate

opu opv 0 o
— I dxdydz - dxdydz PV - 9
P y.az oy x.dy.az pw dxdydz = Y (pdx.dy.dz)
_Opu _Opv _Opw  5p LG
ox oz - VoI (v,l
c~\’/"°‘ -
_Op Opu Opv  Opw

ot

ox oy oz

General equation for 3-D , unsteady and

Special cases:

1- For steady compressible fluid

compressible fluid

8p+8pu+6pv+8pwzo

Ox oy Oz A
St eods oo _,_; .y
out ov ow
—_—t — 4+ —— =
Ox oy Oz

2

) nCem Pré SKala

Note : The above eq™ can be used for steady & unsteady for incompressible fluid

2- For incompressible fluid (p= constant)
¥ _o p, jou, ov. . ow_
ar o PP P =0
(2
3-For2-D:
ou ow
Oox Oy Ox Oz

)

o

ov OoOw
+ — =
oz

O
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What is Potential Flow ? ¢

* Basically where:

V=\7<p\
/

Gradient “del”

el

Ox 0y 0z

Velocity Potential function

What does this mean?
e If V=Vgp
l/ Means flow is irrotational. “All potential flow must be
gr_ggtional flow”.
* @ must satisfy the continuity equation.




Why The Flow Is Irrotational?

JXV=o i;u_,aﬂ,s SRR P
* For irrotationality the curl of the velocity field is zero.
\[= VY V=Vgp
Ixn = UXvYP V<V =V x Ve
\ Curl of gradient is
VXV — O always Z€10. (from calculus)
For Incompressible Flow (sl G5 ey 5T g
* If the flow 1s incompressible we know that: -~ -
V-V =0 V-V =6
 Remember that, V= VQD v=v -
VeVp=0 9. 9p =v*¢=0
VZ @ = 0- The Laplace Equation!!!!

* Also this 1s the continuity equation for potential flow




Why is This Important?

* Superposition Principle

* If ¢, and ¢, are solutions to the Laplace Equation (z.e. Harmonic

function) then ¢, + ¢, 1s also a solution ¥

=) Q
. \
* Therefore, we can add simple flows together to get more

complex flows

* e.g. Source + sink = doublet

* Doublet + uniform flow = flow around a cylinder

Flow 3 = Flow 1 + Flow 2

¢F]OW3 - ¢F]OW 1 7 ¢F]0W2



The Problem with P_Qtential 1ilgw D

* They don’t actually exist

* Don’t use near solid bodies
* These have boundary
* Or anywhere that you expect vorticity

* E.g. Trailing vorticity of a wing




Potential Flow Model of a Uniform Flow

» Potential function (¢), and a Stream function ()

» If you draw these functions out it will become obvious.

» In Cartesian coordinates:

\IK = u=V,
\f), ~v=0
Hence;

¢ = Veox

Y =Vey

_ 09 _ayY
- ax_ay




In Polar-Co-ordinates (r,6)

» Easy to convert

O = Vpx
¢=Vooy \

xX=rcos6 ‘

y =rsinf

¢ =V,rcosb

Y =V,rsinf




Velocity Potential

Assume _9¢
Vx ox 6Vy o % =0
; _og ox Oy
T oy o, _ov, _&¢ _3
Then ox oy B 0yox B Ox0y
In 3D, similarly it can be shown that V. = of e OB
. . . aZ —_— vz'
f is the velocity potential —De—
. . . \
Velocity Potential vs. Stream Function X 2
Stream Function (y) |Velocity Potential (¢)

Exists
for

only 2D flow

all flows

viscous or non-viscous flows

Irrotational (i.e. Inviscid or
zero viscosity) flow

Incompressible flow (steady
or unsteady)

Incompressible flow (steady
or unsteady state)

compressible flow (steady
state only)

compressible flow (steady or
unsteady state)

1]
¢ ¢ P

In 2D inviscid flow (incompressible flow OR steady state compressible flow),

both functions exist .What is the relationship between them?
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Stream Function- Physical meaning

Statement: In 2D (viscous or inviscid) flow (incompressible flow
steady state compressible flow), y = constant represents the
streamline.

If V= constant, then dy =0

dy = (a"”]dﬁ[a‘”]dy & _V, Vy
ox oy dx V.

(—Vy)dx+(Vx)dy

O X
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Stream Function & Velocity Potential

Stream Lines
Consider 2D incompressible flow
Continuity Eq. %—’-E— =3

V, and V| are related

64



Stream Function & Velocity Potential

ov. o

0 _ [l Y« _[l_ oV

Assume V, =—aw Then V. —I Ox )dy _I 8x8yjdy
0

205t LS55

Instead of two functions, V, and V, we need to solve for
only one function y - Stream Function

Order of differential equation increased by one % = 3y P
What does Stream Function y mean?

! = 2ok
Equation for streamlines in 2D are given by o 2xay

y = constant W X

Streamlines may exist in 3D also, but stream function does not

Why? (When we work with velocity potential, we may get
a perspective) oA
In 3D, streamlines follow the equation 7, 7, 7,

65



Rotation in terms of Stream Function

To write rotation in terms of stream functions

v :@_w b _8_!// N :(lj 8Vy_8Vx :(l) _62W_azw
G N 1 \2)| ox Oy 2 ox* oy’

e

For 1rrotational flow (w,=0) Vzw =0 = _(V X V) -0

That is Vi + 2. =0

S Vo,
(VXV:(D 8xy_ o =0

This equation is “similar” to continuity equation V, and V,
are related.
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For the velocity fields given below, determine:
(a) whether the flow field 1S one-, two-, or three-dimensional, and why.

(b) whether the flow s steady or unsteady, and why.
(The quanttties a and b are constants. )

(1) Ve [c..r:c"b'];" (2) V= gy - I'\.;" V = axi — ij

(3) V=i + h(}' ok (4) V=i + !w:_} ok

(5) V= [w"b1 ]a" i 11\'3.;" (6)V = i - b\‘:,f;' V= axy [ — byzt}'
(M) V= ae® +9%) () B)V= (@) -0 V= (ax+of -by2)
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Solution

> > > >

(1) V =V (x) 1D V =V (1) Unsteady
> > > >

(2) V=V (x,y) 2D V =V (b Steady
> > > >

(3) V =V (x) 1D V =V (1) Steady
> > > >

4) V =V (x,2) 2D V =V (D) Steady
> > > >

(5 V=V (x) 1D V =V (1) Steady
> > 5> >

(6) V=V(x,y,z 3D V=V () Unsteady
P i 5> o

(7) V=V(x,y,z) 3D V V() Steady
3 iy 9wy

(8) V=V(x,y) 2D V=V Unsteady



Problem: 2 _ M dy

—

A velocity field 1s given by: }J = axf — QQ/]A

Where a =1 s !'and b =1 s7? . Find the equation of the
streamlines at any time t.

R I N
WA | dx e
—a e H:’Zilo
..S)..'_ﬂ-- = —b dx _::P\Qv«c‘j:. "‘..Li.t ﬂfﬂ-ﬂ'-
S A
-b
. by o &




Examples

> a 2N
Given : Velocity field, V' = Axyi + By~

A=1m'!s™, B=-0.5m™ s7!; coordinates in meter second. Find: an
Equation for flow streamlines.

(V‘:

d9 :
e ol A AxY AX of A
- s jr-z_..d_ﬁ?.. ~ [ dx
2K A YERES
2
ﬁtj :-,a\f\?( -~ C
ﬂ\/ﬂz K-l




Exercise:

A velocity field 1s specified as: [7 — axzf + bxy}'

Where a =2 mi's! and b = — 6 nt! s!, and the coordinates are
measured 1n meters.

1) Is the flow field one-, two-, or three-dimensional? Why? 20

2) Calculate the velocity components at the point (2, 2)?

3) Develop an equation for the streamline passing through this
point.
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