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Chapter 3
KINEMATICS OF FLUID FLOW

1. Types of Fluid Flow.
 1.1 Real -or -Ideal fluid.
 1.2 Uniform -or -Non-uniform Flows.
 1.3 One, Two -or -Three Dimensional Flows.
 1.4 Rotational -or -Irrotational Flows.
2. Circulation -or -Vorticity.
3. Stream Lines, Flow Field and Stream Tube.
4. Velocity and Acceleration in Flow Field.
5. Continuity Equation for One Dimensional Steady Flow.
6. Stream Function & Velocity Potential
7. Reynold’s Number



Fluid mechanics
Is a study of the behavior of fluids, either at rest (fluid statics) 
or in motion (fluid dynamics). 

•  We now turn our attention to fluids in motion. 

•  Instead of trying to study the motion of each particle of the 
fluid as a function of time. 

•  We describe the properties of a moving fluid at each point as 
a function of time.

Fluid Dynamics
The laws of Statics that we have 
learned cannot solve Dynamic 
Problems There is no way to solve for 
the flow rate, or Q. Therefore, we need 
a new dynamic approach to Fluid 
Mechanics.  



• Fluid Kinematics: deals with the motion of fluids without 

considering the forces and moments which create the motion.

We define field variables which are functions of space and time

Pressure field, 

Velocity field 
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Types of fluid Flow
1. Real and Ideal Flow:

Friction = 0
Ideal Flow ( μ =0)
Energy loss =0

Friction = o
Real Flow ( μ ≠0)
Energy loss  = 0

Ideal Real

If the fluid is considered frictionless with zero viscosity it is called ideal.
In real fluids the viscosity is considered and shear stresses occur causing conversion of 
mechanical energy into thermal energy

2. Steady and Unsteady Flow

Steady Flow with respect to time
•Velocity is constant at certain 
position w.r.t. time 

Unsteady Flow with respect to 
time. Velocity changes at 
certain position  w.r.t. time 

H ≠  constant

V ≠ constantH=constant

V=constant

Steady flow occurs when 
conditions of a point in a flow 
field don’t change with respect to 
time (v, p, H…..changes w.r.t. 
time)
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Uniform Flow  means that the 
velocity is constant  at certain 
time in different positions
(doesn’t depend on any 
dimension x or y or z)

3. Uniform and Non uniform Flow

Non- uniform Flow means 
velocity  changes  at certain time 
in different positions (depends on  
dimension x or y or z)
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One,Two and three Dimensional Flow 

Two dimensional flow means that the flow 
velocity is function of  two coordinates
V = f( X,Y  or X,Z  or Y,Z )

One dimensional flow means that the flow 
velocity is function of one coordinate 
V = f( X  or Y  or Z  )

Three dimensional flow means that the flow velocity 
is function of  there coordinates V = f( X,Y,Z)

x

y

5





7

➢Uniform flow: flow velocity is the same magnitude and 
direction at every point in the fluid.

➢Non-uniform: If at a given instant, the velocity is not the same 
at every point the flow. (In practice, by this definition, every fluid 
that flows near a solid boundary will be non-uniform - as the 
fluid at the boundary must take the speed of the boundary, usually 
zero. However if the size and shape of the cross-section of the 
stream of fluid is constant the flow is considered uniform.)

➢ Steady: A steady flow is one in which the conditions (velocity, 
pressure and cross-section) may differ from point to point but DO 
NOT change with time.

➢Unsteady: If at any point in the fluid, the conditions change 
with time, the flow is described as unsteady. (In practice there is 
always slight variations in velocity and pressure, but if the 
average values are constant, the flow is considered steady.)

Uniform Flow, Steady Flow 





Uniform Flow, Steady Flow 
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• Steady uniform flow:
▪Conditions: do not change with position in the stream or with time.
▪Example: the flow of water in a pipe of constant diameter at 

constant velocity.
• Steady non-uniform flow:
▪Conditions: change from point to point in the stream but does not 

change with time.
▪Example: flow in a tapering pipe with constant velocity at the inlet-

velocity will change as you move along the length of the pipe 
toward the exit.

• Unsteady uniform flow:
▪At a given instant in time the conditions at every point are the 

same, but will change with time.
▪Example: a pipe of constant diameter connected to a pump 

pumping at a constant rate which is then switched off.
• Unsteady non-uniform flow:
▪Every condition of the flow may change from point to point and 

with time at every point.
▪Example: waves in a channel.
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Flow in a pipe
Consider the flow in a pipe in which water is 
flowing. At the pipe wall the velocity of the 
water will be zero. The velocity will increase as 
we move toward the center of the pipe. This 
change in velocity across the direction of flow 
is known as velocity profile.

Velocity Profile 

Because particles of fluids next to each other are  
moving with different velocities there are shear 
forces in the moving fluid i.e shear forces are 
normally present in a moving fluid. On the other 
hand, if a fluid is a long way from the boundary 
and all the particles are travelling with the same 
velocity, the velocity profile would look 
something like this:
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• And there will be no shear forces present as all particles have zero 
relative velocity. In practice we are concerned with flow past 
solid boundaries; airplanes, cars, pipe walls, river channels etc. 
and shear forces will be present.

➢ Fluid flow can be steady or unsteady. 

Two fluid particles in a stream. At 
different locations in the stream the 
particle velocities may be different, as 
indicated by V1  and V2.

❑  In steady flow the velocity of the fluid particles at any point is 

constant as time passes.

❑  In Unsteady flow It exists whenever the velocity at a point in the 

fluid changes as time passes.



➢Flow Characteristics
When fluid is in motion, its flow can be 
characterized as being one of two main types: 

1. Steady, or laminar, if each particle: of the 
fluid follows a smooth path, such that the paths 
of different particles never cross each other, as 
shown in figure 3.

•  In steady flow, the velocity of the fluid at any 
point remains constant in time.

Figure3. Laminar flow around an 
automobile in a test wind tunnel
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2. Above a certain critical speed, fluid flow becomes    
      turbulent. Turbulent flow is irregular flow  
     characterized by small wind pool-like regions,  

(figure 4). 
     The smoke first moves in laminar flow at the   

bottom and then in turbulent flow above

Figure 4. Hot gases from a cigarette 
made visible by smoke particles. 



Laminar and Turbulent Flow
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Laminar flow:
▪ all the particles proceed along smooth parallel 

paths and all particles on any path will follow 
it without deviation. 

▪ Hence all particles have a velocity only in the 
direction of flow.

Typical 
particles 

path

Laminar flow

Turbulent Flow:
▪ the particles move in an irregular manner 

through the flow field. 
▪ Each particle has superimposed on its mean 

velocity fluctuating velocity components 
both transverse to and in the direction of the 
net flow.

Particle 
paths

Turbulent flow
Transition Flow:
▪  exists between laminar and turbulent flow.
▪  In this region, the flow is very unpredictable and often 

changeable back and forth between laminar and turbulent states.
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(a) Laminar flow of the Firehole River at Yellowstone;
(b) transition from laminar to turbulent flow in rising smoke; 
(c) turbulent flow at the Upper Falls on the Yellowstone River.

 Turbulent flow: is an extreme kind of unsteady flow and occurs 
when there are sharp obstacles or bends in the path of a fast-
moving fluid.

  In turbulent flow, the velocity at a point changes erratically from 
moment to moment, both in magnitude and in direction. 



 Because the motion of a real fluid is complex and not yet fully 
understood, we make some simplifying assumptions in our approach.

 Many features of real fluids in motion can be understood by considering 
the behavior of an ideal fluid. 
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Properties of an ideal fluid

In our model of an ideal fluid, we make four assumptions:
1. Non-viscous fluid. In a non-viscous fluid, internal 

friction is neglected. An object moving through the fluid 
experiences no viscous force.

2. Steady flow. In Steady flow, we assume that the 
velocity of the fluid  at each point remains constant in 
time.

3. Incompressible fluid. The density of an Incompressible 
fluid is assumed to remain constant in time.

4. Irrotational flow. Fluid flow is irrotational if there is no 
angular momentum of the fluid about any point.   
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• A flow field is best characterized by its velocity distribution.
• A flow is said to be one-, two-,
 or three-dimensional if the flow 
velocity varies in one, two, or three dimensions, respectively. 
• However, the variation of velocity in certain directions can 

be small relative to the variation in other directions and can 
be ignored.
The development of the velocity profile in a circular pipe. V = V(r, z) and thus the flow is two-
dimensional in the entrance region, and becomes one-dimensional downstream when the 
velocity profile fully develops and remains unchanged in the flow direction, V = V(r).

Rotational and irrotational flows 
r⊥The rotational is the average value of rotation of two        

lines in the flow. 
(i) If this average = 0 then there is no rotation and 

the flow is called irrotational flow 

Irrotational flow

Rotational flow



Streamline(s) :خط انسيابي
 When the flow is steady, streamlines are often used to represent 

the trajectories of the fluid particles.
  A streamline is a line drawn in the fluid such that a tangent to the 

streamline at any point is parallel to the fluid velocity at that 
point. 

 In fact, steady flow is often called streamline flow. 

At any point along a streamline, 
the velocity vector of the fluid 
particle at that point is tangent to 
the streamline. 16

The fluid velocity can vary (in both 
magnitude and direction) from point 
to point along a streamline, but at any 
given point, the velocity is constant in 
time, as required by the condition of 
steady flow. 

Figure shows the velocity vectors at three points along a streamline. 
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Streamlines:
• Are imaginary lines drawn to show the flow 

of fluid.
• They are always parallel to the direction of 

flow. Fluid does not flow across streamlines

Streamlines

 This is diagram represents a set of 
streamlines (blue lines).

 A particle at P follows one of these 
streamlines, and its velocity  (v) is 
tangent to the streamline at each point 
along its path.

 No two streamlines can cross each other.

The path taken by a fluid particle under steady flow is called a streamline.



Streamline:
A Streamline is a curve that is everywhere tangent to it at any instant represents the 
instantaneous local velocity vector.

tan

3

dy v
dx u

u v
dx dy

in general for D

u v w
dx dy dz

 = =

=

−

= =



Where :
u velocity component in  -X- direction
v velocity component in-Y- direction
w velocity component in -Z- direction

Stream line equation

222 wvuV ++=w

uv x

z

y

V

velocity vector can written as: V ui vj wk= + +

Where : i, j, k are the unit vectors in positive  x, y, z direction
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Streamtube:
•  Is a bundle of streamlines
•  fluid within a streamtube remain constant 
   and cannot cross the boundary of the streamtube.
  (mass in = mass out)

Types of motion or deformation of fluid element
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Linear translation

Rotational translation

Linear deformation

Angular deformation
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Mass flow rate:  معدل التدفق
الكتلي
 The mass of fluid per second (e.g., 5 kg/s) that flows through 

a tube is called the mass flow rate. 
 If a fluid enters one end of a pipe at a certain rate (e.g., 5 

kilograms per second), then fluid must also leave at the same 
rate, assuming that there are no places between the entry and 
exit points to add or remove fluid. 

Continuity
➢ This principle of conservation of mass saya matter cannot be 

created or destroyed.
➢ This applied in fluids to fixed volumes, known as control 

volumes (or surfaces)
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If the mass flow rate is 1.7 kg/s, how long will it take to fill a container 
with 8kg of fluid? (t=?)

Example:
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If the bucket above fills with 2.0 litres in 25 seconds, what is 
the discharge?(Q=?)
Solution: 
Q = 2.0 × 10 ̶ 3 m3/ 25 s =0.00008 m3/s    
Q = 0.08 ℓ/s

Example:
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Consequently, if the density of the fluid in the above example is 
850 kg .m ̶  3, then:
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If A =1.2 × 10  ̶3 m2 and discharge, Q is 2.4 l/s, what is the mean 
velocity? (um=?)

Example:



 

The equation of continuity  
A fluid moving with streamline flow through a pipe of varying 
cross-sectional area. the volume of fluid flowing through A1 in a 
time interval Δt must equal the volume flowing through A2 in 
the same time interval. (Fluid is incompressible)
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• This expression is called the equation of continuity. 
• The product of the area and the fluid speed at all points along the 

pipe is a constant for an incompressible fluid (continuity principle).

Q1 = Q2
A1 v1=A2v2 = Constant

Q1 = V1/t

      = A1L1/t
        = A1v1

Q2 = V2/t

        = A2L2/t
         =A2v2



• When the end of a hose is partially closed 
off, thus reducing its cross-sectional area, 
the fluid velocity increases.
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• This kind of fluid behavior is described by the equation of continuity.

Ideal fluid flowing through a pipe with changing cross-sectional 
area.
The volume per unit time (∆v/ ∆ t) passing any 
point in the pipe must be the same in all parts of the 
pipe or else we would somehow be creating or 
destroying fluid. Thus, we get:     A1v1 = A2v2 .              
This equation is called the equation of continuity.
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Equation of Continuity

ρ1 A1 v1= ρ2 A2v2

• If the density doesn’t change – typical for liquids – this simplifies 
to:    

• Where the pipe is wider, the flow is slower.

A1 > A2 but v2 > v1
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• We will deal with laminar flow.

• The mass flow rate is the mass that passes a given 
point per unit time. The flow rates at any two 
points must be equal, as long as no fluid is being 
added or taken away.

• This gives us the equation of continuity:

Mass Flow Rate and the Equation of Continuity
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Reynold’s number
Flow in a pipe or liquid
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 ρ: is the density of the fluid
  V: is the mean fluid velocity 
  D: is the diameter
 Q: is the volumetric flow rate 

 μ:  is the dynamic viscosity of the fluid
  ν: is the kinematic velocity of the fluid
 A: is the pipe cross-sectional area.

A dimensionless number in fluid mechanics.
Reynolds’ Results



The value of R determined the type of flow in the 
experimental tubes: UD


=R
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Laminar Flow: every fluid 
molecule followed a straight path 
that was parallel to the boundaries 
of the tube.

Transitional Flow: every fluid 
molecule followed wavy but 
parallel path that was not parallel 
to the boundaries of the tube.

Turbulent Flow: every fluid 
molecule followed very complex 
path that led to a mixing of the 
dye.
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Reynolds found that conditions for each of the flow types 
depended on:
1.  The velocity of the flow (U) 2.  The diameter of the tube (D)

3.  The density of the fluid (ρ). 4.  The fluid’s dynamic viscosity 
(m).

He combined these variables into a dimensionless combination 
now known as the Flow Reynolds’ Number (R) where:

UD


=R
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UD


=R

Flow Reynolds’ number is often expressed in terms of the 
fluid’s kinematic viscosity (ν; lower case Greek letter nu), 
where:




= (units are m2/s)

UD


=R

 =Rearranging:

Substituting into R:

UD

=R



34

Example:  Given two pipes, one with a diameter of 10 cm and the 
other with a diameter of 1 m, at what velocities will the flows in each 
pipe become turbulent?
What is the critical velocity for R = 2000?

2000UD


= =R 2000U
D


=Solve for U:

Solve for D = 0.1 m and D = 1.0 m.

3
6 21.005 10 1.007 10 m /s

998.2



−
−

= = = Given: Distilled water
at 20°C.

For a 0.1 m diameter pipe: For a 1.0 m diameter pipe:

62000 1.007 10
0.1

U
− 

=

0.02m/s 2cm/sU = =

62000 1.007 10
1

U
− 

=

0.002m/s 2mm/sU = =

2000U
D


=
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Frictionless Flow Along Streamlines 

• Application of the second Newton’s law of motion 
along streamlines of fluid flow leads to a very famous 
equation in Fluid Mechanics, i.e. the Bernoulli 
equation.

• There are four assumptions used to derive the equation 
and these four assumptions must always be 
remembered to ensure that it is used correctly, 

1. The flow is inviscid or frictionless, i.e. viscous effects 
are negligible which is valid for low viscosity fluids 
such   as water and air,

2. The flow is steady, i.e. the flow pattern is fully 
developed and does not change with time,
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3. The flow is incompressible, which is valid for all 
liquids and low speed gas of Mach 0.3 or below 
since the change in gas density is less than 5%.

4. The flow considered is along the same streamline, as 
the variation of properties for fluid molecules 
travelling in the same path can be simulated more 
accurately through conservation laws of physics.

Frictionless Flow along Streamlines 



Bernoulli’s Equation
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A fluid flowing through a constricted pipe with streamline 
flow. The fluid in the section of length Δx1 moves to the 
section of length Δx2 . 

The volumes of fluid in the two sections are equal.

The speed of water spraying from the end of a hose 
increases as the size of the opening is decreased with thumb.





Bernoulli’s Equation:
• The sum of the pressure, kinetic energy per unit volume, and

gravitational potential energy per unit volume has the same
value at all points along a streamline.

• This result is summarized in Bernoulli’s equation:
P + 1/2 ρ v2 + ρ gy = constant

38

• For steady flow, the speed, pressure, and elevation of an 
incompressible and nonviscous fluid are related by an 
equation discovered by Daniel Bernoulli (1700–1782). 
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Bernoulli’s Equation

A fluid can also change its 
height. By looking at the 
work done as it moves, we 
find:

This is Bernoulli’s equation. 
One thing it tells us is that 
as the speed goes up, the 
pressure goes down.



The Venturi tube

Pressure P1 is greater Than the pressure P2 since v1 < v2. This 
device can be used to measure the speed of fluid flow.

Solution: Because the pipe is horizontal, 

y1 = y2, and applying Bernoulli’s equation:

40

The horizontal constricted pipe illustrated 
in figure known as a Venturi tube, can be 
used to measure the flow speed of an 
incompressible fluid. Let us determine the 
flow speed at point 2 if the pressure 
difference P1 ̶  P2 is known. Venturi Tube

A Venturi tube with air flowing through it
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Applications of the Bernoulli Theorem
• Flow and the streamline under consideration are shown in 

Fig. below.  Here, using the Bernoulli equation, we can form a 
relation between point (1) and point (2) as follows:

  p1 + ½V1
2 + gz1 = p2 + ½V2

2 + gz2
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Applications of the Bernoulli Theorem

• At point (1), the pressure is atmospheric (p1 = p0), or the gauge 
pressure is zero, and the fluid is almost at rest (V1 = 0).  At 
point (2), the exit pressure is also atmospheric (p2 = p0), and 
the fluid moves at a velocity V.  By using point (2) as the 
datum where z2 = 0 and the elevation of point (1) is h, the 
above relation can be reduced to:

  p0 + ½(0)2 + gh = p0 + ½V 
2 +  g (0)

             gh = ½V 
2 

  Hence we can formulate the velocity V to be
  
    V =  2gh



Irrotational flow

• Irrotational flow means that no part of the fluid
rotates about its own center of mass.

• Rotational motion of a small part of the fluid
would mean that the rotating part of the fluid
does have rotational energy, which is not
considered in ideal fluids.
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Rotation
Definition of rotation

ROTATION
2z

d
dt

  + = =  
 

Assume Vy|x  < Vy|x+𝛥x

and Vx|y  > Vx|y+𝛥y

Time=t

x

y

Dx

Dy

y x x
V

+Dy x
V

x y
V

x y y
V

+D





44



Rotation
To Calculate Rotation 1tan y

x
 D
=
D


Dy1

Dx
( ) ( )1 y yx x x

y V t V t
+D

D = D − D

( )
arctan

y yx x x
V V t

x
 +D

− D
=

D
( )

arctan
x xy y y
V V t

y
 +D

− − D
=

D
Similarly

ROTATION
2z

d
dt

  + = =  
 

( ) ( )
0

1 lim
2

t t t
t t

   
+D

D →

 + − +
 =
 D 

For very small time and very small element, Dx, Dy and Dt are 
close to zero

( ) ( )

0 0

arctan arctan
1 1lim lim
2 2

y y x xy y yx x x

t t

V V t V V t

x y

t t

+D+D

D → D →
−

   − D − D   
   D D         =    D D   0xD →

0yD →
0xD →
0yD →
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( ) ( )

0 0

arctan

lim lim

y y y yx x x x x x

t t

V V t V V t

x x

t t

+D +D

D → D →

   − D − D   
   D D      =

D D
0xD →
0yD →

0xD →
0yD →

Rotation
For very small q, (i.e.q ~ 0)

arctan   ( ) ( )
arctan

y y y yx x x x x x
V V t V V t

x x
+D +D

 − D − D   D D  

 cos 1  tan  sin

( )
0

lim
y y yx x x

x

V V V
x x

+D

D →

− 
=

D 

1
2

y x
z

V V
x y


  = −       

Simplifies to

( ) ( )

0 0

arctan arctan
1 1lim lim
2 2

y y x xy y yx x x

z t t

V V t V V t

x y

t t


+D+D

D → D →

   − D − D   
   D D         =    D  

−
D 0xD →

0yD →
0xD →
0yD →

( )1
2z V  =  

 
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x

y

z

w v
y z

u w
z x

v u
x y







  
= −   

  = −   

  
= −   

• Rotational Flow & Irrotational Flow:

The rate of rotation can be expressed or equal to the angular velocity vector(     ):

Note:












−



=












−



=












−



=

y
u

x
v

x
w

z
u

z
v

y
w

z

y

x

2
1

2
1

2
1








k

y
u

x
vj

x
w

z
ui

z
v

y
w












−



+










−



+










−



=
2
1

2
1

2
1

The flow is said to be rotational if :
0zoror yx 

The flow is said to be irrotational if :
0=== zyx 

The  fluid elements are rotating in space

The  fluid elements don’t rotating in 
space
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• Vorticity ( ξ ):
Vorticity is a measure of rotation of a fluid particle
Vorticity is twice the angular velocity of a fluid 
particle



• Circulation ( Г ):

The circulation ( Г )  is a measure of rotation and is defined as the 

line integral of the tangential component of the velocity taken around 

a closed curve in the flow field.

+

θ

The flow is irrotational if      ω=0,    ξ=0,   Г=0
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• For 2-D Cartesian Coordinates  

dx
x
vv



+

x

Y

dy

dx

dy
y
uu



+

u

v +

vdydxdy
y
uudydx

x
vvudxd −




+−



++==  )()(

area

dxdy
y
u

x
v

z .

)(

=



−



=
Г = ξ . area





Lagrange Frame:

Eulerian Frame: we describe the acceleration in terms of position 
and time without following an individual particle.  This is analogous 
to describing the velocity field in terms of space and time.

A fluid particle can accelerate due 
to a change in velocity in time 
(“unsteady”) or in space (moving 
to a place with a greater velocity).

• From Newton's second law, 

• The acceleration of the particle is the time 
derivative of the particle's velocity.

• However, particle velocity at a point is the same       
as the fluid velocity,

➢ Acceleration Field

particle particle particleF m a=

particle
particle

dV
a

dt
=
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Acceleration Field: Material (Substantial) Derivative 

time dependence spatial  dependence

We note:

Then, substituting:

The above is good for any fluid particle, so we drop “A”:
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Writing out these terms in vector components:

x-direction:

y-direction:

z-direction:

Fluid flows experience fairly 
large accelerations or 
decelerations, especially 
approaching stagnation points.

Writing these results in “short-hand”:

where,

k
z

j
y

i
x

ˆˆˆ()



+



+



=,



Acceleration Field: Material (Total, Substantial, 
Substantive) Derivative 

Applied to the Temperature Field in a Flow:

The material derivative of any variable is the rate at which that variable 
changes with time for a given particle (as seen by one moving along with 
the fluid—Lagrangian description).

Acceleration Field: Unsteady Effects
Consider flow in a constant diameter pipe, where the flow is 
assumed to be spatially uniform:

0 0 00 0
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Acceleration Field: Convective Effects
The portion of the material derivative represented by the spatial 
derivatives is termed the convective term or convective acceleration:
- It represents the fact the flow property associated with a fluid 
particle may vary due to the motion of the particle from one point in 
space to another.
- Convective effects may exist whether the flow is steady or unsteady.

Example 1: Example 2:

Acceleration = Deacceleration 52



t
u

z
uw

y
uv

x
uua

t
uw

z
uv

y
uu

x
ua

t
u

dt
dz

z
u

dt
dy

y
u

dt
dx

x
u

dt
dua

dt
t
udz

z
udy

y
udx

x
udu

x

x

x




+



+



+



=




+



+



+



=




+



+



+



==




+



+



+



=

Convective component Local component

Mathematically the total derivative equals the sum of the partial derivatives

( ) ( ) ( ), , , , , , , , ,V u x y z t i v x y z t j w x y z t k= + +

Similarly :

t
v

z
vw

y
vv

x
vuay 


+




+



+



=

t
w

z
ww

y
wv

x
wuaz 


+




+



+



=

zyx aaaa 222 ++=
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( Mass can neither be created 
nor destroyed )
The general equation of 
continuity for three 
dimensional steady flow

x

y

dx

dz

dy

z

dzdydx
x
uu .).(




+


dzdyu ..

dzdxv ..

dxdyw.

dzdxdy
y
vv .).(




+


dxdydz
z
ww ).(




+


Conservation of Mass (Continuity Equation)
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Net mass in x-direction =                 -dzdyu .. dzdydx
x
uu .).(




+


Net mass in y-direction=                    -dzdxv .. dzdxdy
y
vv .).(




+


Net mass in z-direction=                 -dydxw .. dydxdz
z
ww .).(




+
 dzdydx

z
w ..




−


dzdydx
y
v ..




−


dzdydx
x
u ..




−


=

=

=



Σ net mass = mass storage rate
dzdydx

x
u ..




−
 dzdydx

y
v ..




−


dzdydx
z
w ..




−


= )..( dzdydx
t





x
u




−


y
v




−


z
w




−


= t


x
u




−


y
v




−


z
w




−


=t


−


0

General equation for 3-D , unsteady and compressible fluid

0=



+



+



+



z
w

y
v

x
u

t

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Special cases:
1-  For steady compressible fluid 
2-  For incompressible fluid (ρ= constant)

0=


t


0=



+



+



+



z
w

y
v

x
u

t
 0=




+



+



z
w

y
v

x
u

Note : The above eqn. can be used for steady & unsteady for incompressible fluid
3- For 2-D :

0=



+



y
v

x
u 0=




+



z
w

x
u 0=




+



z
w

y
v



What is Potential Flow ?
• Basically where:

𝑉 = 𝛻𝜑

Gradient “del”

Velocity

∇=
𝜕

𝜕𝑥
,

𝜕
𝜕𝑦

,
𝜕

𝜕𝑧

Potential function

What does this mean?
• If  𝑉 = 𝛻𝜑 
• Means flow is irrotational. “All potential flow must be 

irrotational flow”. 
• 𝜑 must satisfy the continuity equation.



Why The Flow Is Irrotational?

• For irrotationality the curl of the velocity field is zero.
𝑉 = 𝛻𝜑

   𝛻×𝑉 = 𝛻 × 𝛻𝜑

For Incompressible Flow
• If the flow is incompressible we know that:
 𝛻・𝑉 = 0
• Remember that,        𝑉 = 𝛻𝜑 

𝛻・𝛻𝜑 = 0
𝛻2𝜑 = 0

• Also this is the continuity equation for potential flow

Curl of gradient  is 
always zero. (from calculus)𝛻×𝑉 = 0

The Laplace Equation!!!!



Why is This Important?
• Superposition Principle 

• If 𝜙1 and 𝜙2 are solutions to the Laplace Equation (i.e. Harmonic 
function) then 𝜙1 + 𝜙2 is also a solution

• Therefore, we can add simple flows together to get more 
complex flows 
• e.g. Source + sink = doublet 
• Doublet + uniform flow = flow around a cylinder 
 

 Flow 3 = Flow 1 + Flow 2
𝜙Flow 3 = 𝜙Flow 1 + 𝜙Flow 2 



The Problem with Potential Flow

• They don’t actually exist

• Don’t use near solid bodies

• These have boundary 

•Or anywhere that you expect vorticity

•E.g. Trailing vorticity of a wing

 

 



Potential Flow Model of a Uniform Flow
➢ Potential function (𝜙), and a Stream function (𝜓)

➢ If you draw these functions out it will become obvious.

➢ In Cartesian coordinates:

𝑉∞

𝑢 = 𝑉∞ = 𝜕𝜙
𝜕𝑥

 = 𝜕𝜓
𝜕𝑦

𝑣 = 0

𝜙 = 𝑉∞𝑥
Hence:

𝜓 = 𝑉∞𝑦



In Polar-Co-ordinates (r,𝜃)

➢ Easy to convert

𝜙 = 𝑉∞𝑥
𝜓 = 𝑉∞𝑦

x = 𝑟 cos 𝜃
𝑦 = 𝑟 sin 𝜃

𝜙 = 𝑉∞𝑟 cos 𝜃
𝜓 = 𝑉∞𝑟 sin 𝜃



Velocity Potential

In 3D, similarly it can be shown that

Assume
xV x


=


y xV V
x y

 
=

 

0y xV V
x y

 
− =

 
2

y x


=
 

2

x y


=
 

yV y


=


zV z


=


Then

f is the velocity potential
Velocity Potential vs. Stream Function

Stream Function (y) Velocity Potential ()
only 2D flow all flows

viscous or non-viscous flows
Irrotational (i.e. Inviscid or 
zero viscosity) flow

Incompressible flow (steady 
or unsteady)

Incompressible flow (steady 
or unsteady state)

compressible flow (steady 
state only)

compressible flow (steady or 
unsteady state)

Exists 
 for

In 2D inviscid flow (incompressible flow OR steady state compressible flow), 
both functions exist .What is the relationship  between them?
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Stream Function- Physical meaning
Statement: In 2D (viscous or inviscid) flow (incompressible flow 

steady state compressible flow), y = constant represents the 
streamline. 

d dx dy
x y
y yy

   = +       
( ) ( )
0

y xV dx V dy= − +

=

If y = constant, then dy = 0

y

x

Vdy
dx V

=

Vx

Vy
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• Stream Lines
Consider 2D incompressible flow
Continuity Eq.

( ) ( ) ( ) 0=



+



+



+



zyx V
z

V
y

V
xt



( ) ( ) 0x yV V
x y
 

+ =
 

Vx and Vy are related

x
y

VV dy
x

 = −  

Stream Function & Velocity Potential
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Assume xV y
y

=


Instead of two functions, Vx and Vy, we need to solve for 
only one function y - Stream Function

Order of differential equation increased by one

Then
2

x
y

VV dy dy
x x y

y   = − = −       
 

2

dy
y x x
y y   = − = −       



Stream Function & Velocity Potential

What does Stream Function y mean?
Equation for streamlines in 2D are given by

 y  = constant
Streamlines may exist in 3D also, but stream function does not

Why?  (When we work with velocity potential, we may get 
a perspective)

In 3D, streamlines follow the equation x y z

dx dy dz
V V V

= =
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To write rotation in terms of stream functions
2 2

2 2

1 1
2 2

y x
z

V V
x y x y

y y
        = − =              

− −xV y
y

=
 yV x

y = −  

21
2

y = −  
 

2 2 0zy  + =That is

For irrotational flow (𝝎z=0) 2 0y =

Rotation in terms of Stream Function

This equation is “similar” to continuity equation Vx and Vy 
are related.

( )1 0
2z V =  =

0V = 0y xV V
x y

 
− =

 
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jbyiaxV ˆˆ −=


jbyitaxV ˆ2ˆ)( −+=


jbyztiaxyV ˆˆ −=

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Problem:

A velocity field is given by:

Where  a = 1 s ̶̶ 1 and b = 1 s ̶̶ 2 . Find the equation of the 
streamlines at any time t.

jbtyiaxV ˆˆ −=

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jByiAxyV ˆˆ 2+=


Given : Velocity field, 

 A= 1 m  ̶1 s ̶̶ 1, B= – 0.5 m ̶ 1 s ̶ 1; coordinates in meter  second. Find: an 
Equation for flow streamlines.

Examples
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jbxyiaxV ˆˆ2 +=


A velocity field is specified as:

Where a = 2 m̶ 1s̶ 1 and b =  ̶  6 m̶ 1 s̶ 1, and the coordinates are 
measured in meters.
1) Is the flow field one-, two-, or three-dimensional? Why? 
2) Calculate the velocity components at the point (2, ½)?
3) Develop an equation for the streamline passing through this 
point. 

Exercise:
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