

Signals & Systems

1. Signals and Systems

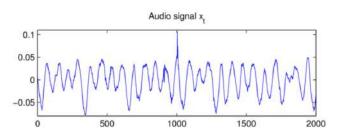
Table of contents

- Signals
- 2 Continuous-time vs Discrete-time Signals
- 3 Analog vs Digital Signals
- 4 Deterministic vs Random Signals
- 5 Signal Operations
 - Addition of CT Signals
 - Multiplication
 - Time Shifting
 - Time Reversal
 - Time Scaling
 - Multiple Signal Transformations

Why Study Signals and Systems?

- Helps design reliable and safe engineering systems.
- Enables mathematical modeling and simulation.
- Prevents failures performance, cost, safety.

What is a Signal?



What is a Signal?

A **signal** is a **function** that conveys information about a physical phenomenon (information) about how something changes over time or space.

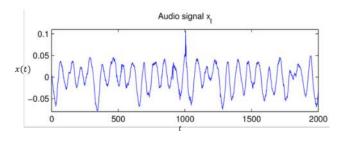
Examples:

- My voice in this lecture is a signal because the sound waves change over time
- A video is a signal because the brightness, colors, and the frames change over time
- Voltage v(t) or current i(t) in an electronic circuit
- The position, velocity, or acceleration of an object
- Digital image, digital video, or digital audio
- The temperature of a room over a day is a signal
- Stock index over a day is a signal

What is a Signal?

Mathematically, a signal is represented as a function of an independent variable t. Usually t represents time. Thus, a signal is denoted by x(t).

■ A **signal** maps an independent variable to a value: x : domain $\to \mathbb{R}$ (or \mathbb{C}).



A signal $x(t_1, t_2, \ldots, t_n)$:

■ t_k = independent variables

X = dependent variable

5 / 56

Signal Dimensionality

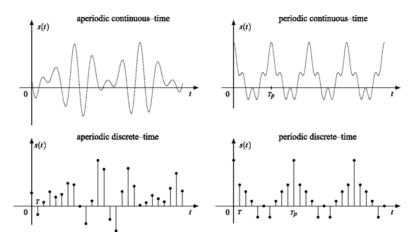
Number of independent variables (i.e., dimensionality):

- 1D Signal: One independent variable (e.g., time)
 - Audio signal (pressure as a function of time)
- Multi-D Signal: More than one variable
 - Image (light intensity over x and y)
 - 2D: Image intensity over (x, y)
 - 3D: MRI scan intensity over (x, y, z)

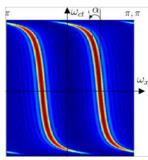
In this course

We will only deal with one dimensional signals

Examples of 1-D Signal

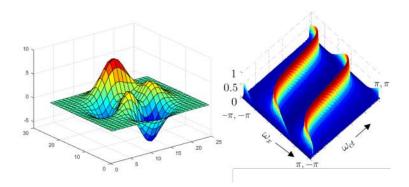


Examples of 2-D Signal



8 / 56

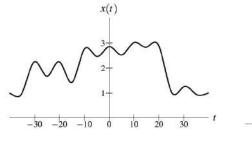
Examples of 3-D Signal



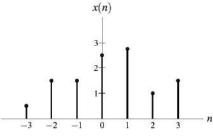
Continuous-Time (CT) vs Discrete-Time (DT)

- A signal with continuous independent variables is said to be Continuous-Time (CT):
 - Independent variable is *continuous*
 - Defined at every instant in time
 - Example: Analog voltage waveform
- A signal with discrete independent variables is said to be **Discrete-Time (DT)**:
 - Independent variable is discrete
 - Defined only at specific time instants
 - Example: Daily temperature samples

Continuous-Time (CT) vs Discrete-Time (DT)



Continuous-Time (CT) Signal



Discrete-Time (DT) Signal

Continuous-valued (CV) vs. Discrete-valued (DV)

This classification is about amplitude (range), not the time axis.

- A signal with continuous independent variables is said to be Continuous-valued (CV):
 - Values can be any real number in an interval (uncountably many).

$$x(t) \in \mathbb{R}$$
 or $x[n] \in \mathbb{R}$

- Take any value in an interval
- Example: Analog voltage waveform
- A signal with discrete independent variables is said to be **Discrete-valued** (**DV**):
 - Values come from a finite (or countable) set of levels.

$$x(t) \in \{\alpha_1, \dots, \alpha_M\}$$
 or $x[n] \in \{\alpha_1, \dots, \alpha_M\}$

di

- Takes only specific values (e.g., integers)
- Example: Binary signal $\{0,1\}$ or NRZ waveform $\{\pm 1\}$.

Orthogonality: You can have CT-CV (analog waveform), CT-DV (continuous time, finite levels—e.g. ideal square wave ±1), DT-CV (sampled but unquantized), and DT-DV (digital sequence).

Analog vs Digital Signals

CU

Analog vs Digital Signals

Analog Signal

A continuous-valued (CV) continuous-time (CT) signal is said to be analog.

■ e.g., microphone output or voltage waveform.

Digital Signal

A discrete-valued (DV) discrete-time (DT) signal is said to be digital.

■ e.g., binary data, digital audio in a computer

In this course

We will use

- $\mathbf{x}(t)$ to denote continuous-time signals $\mathbf{x}(t)$
- x[n] or $\{x_n\}$ to denote discrete-time signals x[n]

13 / 56

<u>Discrete-time</u> signal = sequence

- 1111
- A DT signal is a **sequence of numbers**: $\{x_n\}$ or x[n], $n \in \mathbb{Z}$.
- Other times DT signals come from sampling a CT signal.

$$\{x_n\} = \{\ldots, x[-1], x[0], x[1], \ldots\}$$

- Sample a CT signal x(t) at times $t_n = nT_s$ ($T_s > 0$ is the **sampling interval**).
- The DT sequence is

$$x[n] = x_n = x(t_n) = x(nT_s), \quad t_n = nT_s, \quad n \in \mathbb{Z}.$$

- Indices are integers: $n = \dots, -2, -1, 0, 1, 2, \dots$
- Sampling frequency: $f_s = \frac{1}{T_s}$ (samples per second).

السردد = الفتره (زمن)

Use brackets [] for DT: x[n] and parentheses () for CT: x(t).

Defining a discrete-time signal

Two equivalent ways:

By a rule (formula) for the n-th value, e.g.

$$x[n] = \begin{cases} (1/2)^n, & n \ge 0, \\ 0, & n < 0. \end{cases}$$

By an explicit list of values (a sequence):

$$\{x_n\} = \{\dots, 0, 0, 1, 2, 2, \underset{\uparrow}{1}, 0, 1, 0, 2, 0, 0, \dots\}$$
$$\{x_n\} = \{\dots, 0, 0, 1, 2, 2, \underset{n=0}{1}, 0, 1, 0, 2, 0, 0, \dots\}$$

(Convention: if no arrow/index is shown, the first listed element corresponds to n = 0 or \uparrow and all earlier terms are 0.)

Four	Signal	Types	=	Time	Axis	\times	Amplitude
	_						

	Continuous-Valued (CV)	Discrete-Valued (DV)
Continuous-Time	CT-CV	CT-DV
(СТ)	Analog waveform; defined for all t; amplitude real-valued.	 Continuous time, but amplitudes from a finite set (levels).
	■ Example: $v(t) = 3\cos(2\pi f_0 t + \varphi)$	■ Example: $x(t) = \operatorname{sgn}(\sin \omega_0 t) \in \{-1, +1\}$
Discrete-Time	DT-CV	DT-DV
(DT)	■ Samples at t = nT _s ; each sample is real (unquantized).	Samples at t = nT _s ; each sample from a finite set.
	■ Example: $x[n] = e^{-0.1n} \sin(0.4\pi n)$	■ Example: $x[n] \in \{0,1\}$ (binary) or M-level PCM

How signals move between boxes: Sampling \Rightarrow CT \rightarrow DT; Quantization \Rightarrow CV \rightarrow DV.

Four Signal Types: Time axis \times Amplitude

Quantization: $CV \rightarrow DV$

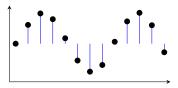
		Quantization: OV -> DV						
		Continuous-Valued (CV)	Discrete-Valued (DV)					
CT → DT	Continuous-Time (CT)	CT-CV (analog)	CT-DV (level/square)					
Sampling:	Discrete-Time (DT)	DT-CV (samples, real-valued)	DT-DV (digital sequence)					

Khaled H Almotairi Signals & Systems 12th

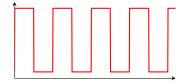
17 / 56

Four Signal Types (Time axis × **Amplitude)**

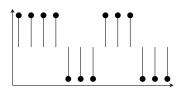
CT-CV: analog (continuous time, real amplitude)



DT-CV: samples, real-valued (discrete time, real amplitude)



CT-DV: level/square (continuous time, quantized amplitude)



DT-DV: digital sequence (discrete time, quantized amplitude)

Deterministic vs Random Signals

CI, io XI

عقانيه

Deterministic vs Random Signals

Deterministic

Values are **completely specified** for every time index.

Example (CT):
$$x(t) = A\cos(\omega_0 t + \varphi)$$
 \Rightarrow exactly predictable at all t .

Random (stochastic)

Values are **not predictable pointwise**; must be described statistically (e.g., mean, variance, distribution, autocorrelation).

Example (DT):
$$x[n] \sim \text{i.i.d.}$$
 noise $\mathbb{E}\{x[n]\} = 0$, $\text{var}\{x[n]\} = \sigma^2$.

$$\mathbb{E}\{x[n]\}=0, \text{ var}\{x[n]\}=\sigma^2.$$

Random signals are usually treated via probability & statistics.

In this course

We will focuses on deterministic signals.

Signal Operations

Transformations of the Independent Variable

- Signal transformations are crucial for:
 - Signal analysis
 - System response computation
- Common transformations:
 - Time Shifting
 - Time Reversal
 - Time Scaling

Addition of CT Signals

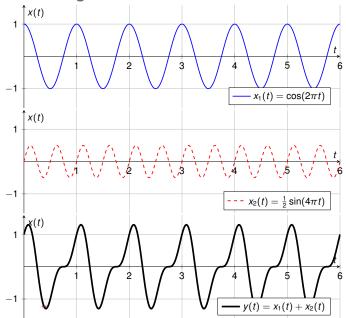
Definition (pointwise) Given $x_1(t), x_2(t) : \mathbb{R} \to \mathbb{R}$ (or \mathbb{C}), $y(t) = x_1(t) + x_2(t)$ for every t. Key properties Associative: $(x_1 + x_2) = x_2 + x_1$ Identity & inverse: Commutative: $x_1 + x_2 = x_2 + x_1$ | Identity & inverse: x + 0 = x, x + (-x) = 0

Example:

$$x_1(t) = \cos(2\pi t), \qquad x_2(t) = \frac{1}{2}\sin(4\pi t), \qquad y(t) = x_1(t) + x_2(t).$$

21 / 56

Addition of CT Signals



Multiplication of Continuous-Time Signals

Pointwise product

Given CT signals $x_1(t)$ and $x_2(t)$, their product is

$$y(t) = x_1(t) x_2(t) .$$

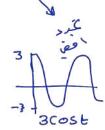
- Computed at each instant t (sample-by-sample).
- Zeros propagate: if $x_1(t_0) = 0$ or $x_2(t_0) = 0$, then $y(t_0) = 0$.
- If $x_2(t) = a$ (constant), then $y(t) = ax_1(t)$ (vertical scaling).

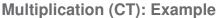
U'icobis did

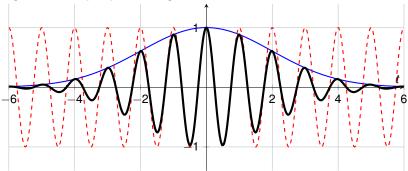
y = x, x2

y = axi

3







$$x_1(t) = e^{-t^2/8} - x_2(t) = \cos(2\pi t) - y(t) = x_1(t) x_2(t)$$

Step 1: show $x_1(t)$ (a time window). Step 2: add $x_2(t)$ (a cosine carrier). Step 3: product y(t) = windowed cosine (amplitude-modulated).

Time Shifting (translation) of CT Signals

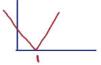
Definition

Time shifting maps the input signal x(t) to the output

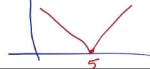
$$y(t) = x(t-b)$$
, $b \in \mathbb{R}$.

$$b\in\mathbb{R}$$
.

- If b > 0: shift right (delay by b).
- If b < 0: shift left (advance by |b|).
- Shape is unchanged; only the time axis is displaced.



(t-2) (کا صَرِی) المامه عنوالیمن حصوتین (کا صَرِی)

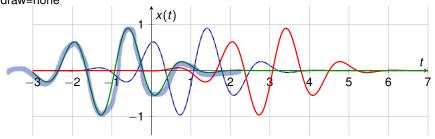


Time Shifting of CT Signals

Example used on the plot:

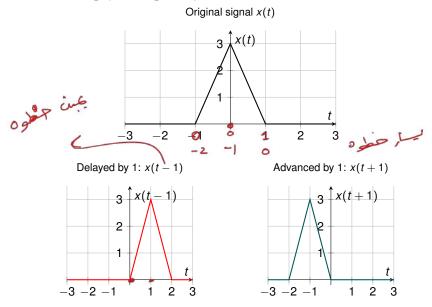
$$x(t) = e^{-\frac{1}{2}(t-1)^2}\cos(2\pi\cdot 0.7 t).$$

legend columns=3, legend cell align=left, legend style=at=(0.5,-0.18), anchor=north, draw=none



26 / 56

Time Shifting (CT Signals)



Time Shifting of DT Signals

Time shifting (translation) maps the input sequence x[n] to the output

$$y[n] = x[n-b]$$

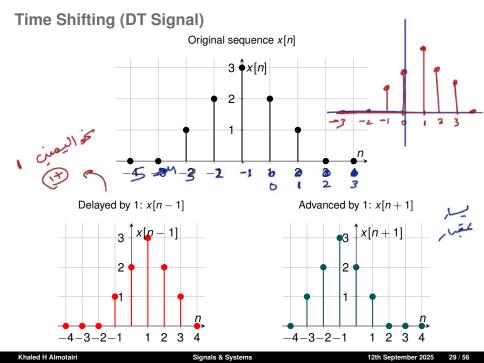
$$+ [n-3]$$

28 / 56

where $b \in \mathbb{Z}$ (an integer shift).

- The operation moves samples along the time (index) axis:
 - If b > 0: shift to the right (delay by b samples).
 - If b < 0: shift to the left (advance by |b| samples).

b	y[n]	Effect
1	<i>x</i> [<i>n</i> − 1]	delay by 1 sample (right shift)
2	x[n-2]	delay by 2 samples کیپ
-1	x[n+1]	advance by 1 sample (left shift)
-3	x[n+3]	advance by 3 samples

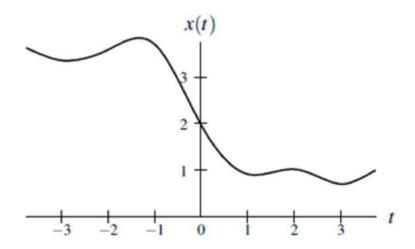


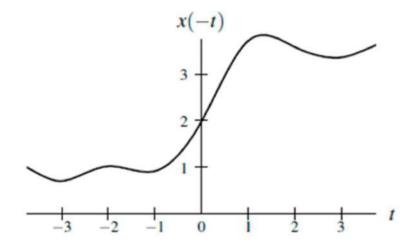
Time Reversal

 Time reversal (also known as reflection) maps the input signal x to the output signal y as given by

$$y(t) = x(-t).$$

• Geometrically, the output signal y is a reflection of the input signal x about the vertical line t = 0.





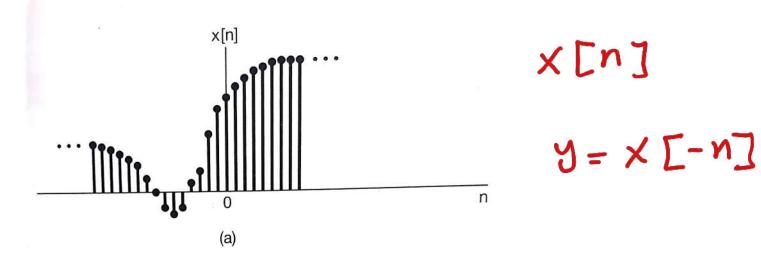
Time Reversal: Examples

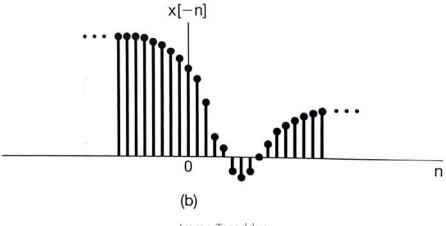
- For example, if x(t) represents an audio signal, then x(-t) is the same audio signal played backward
- Sketch x(-t) for the following signal



Umm Al-Qura University

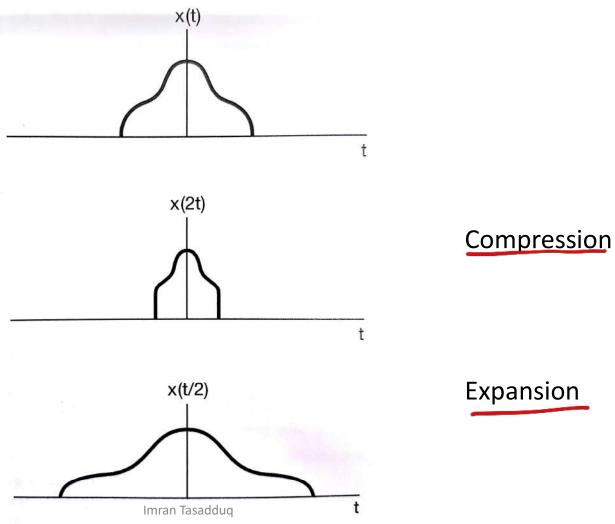
Time Reversal: DT Example





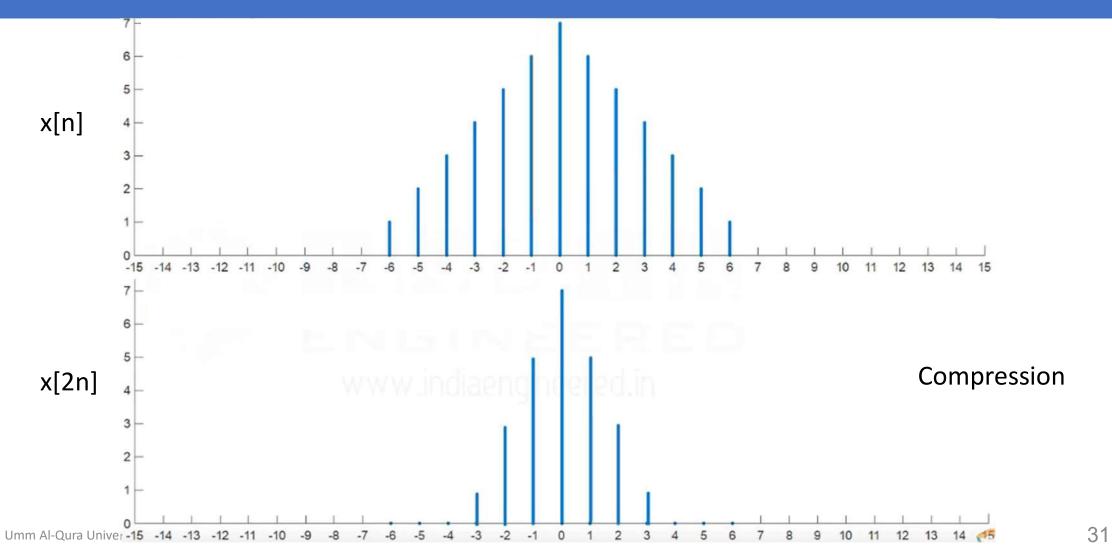
Umm Al-Qura University Imran Tasadduq 29

Time Scaling

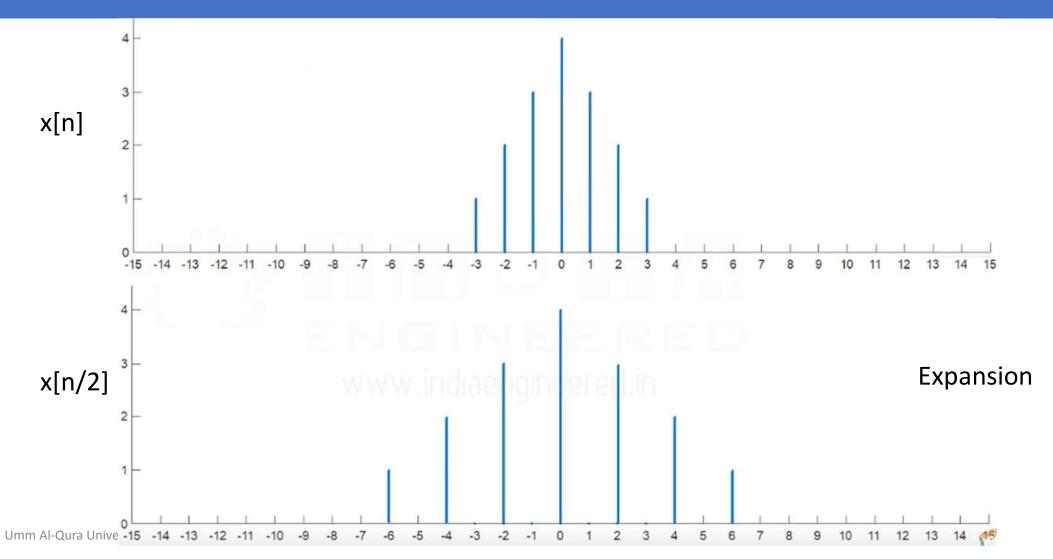


30 Umm Al-Qura University

Time Scaling (DT Signals)



Time Scaling (DT Signals)



Time Scaling

Time scaling maps the input signal x to the output signal y as given by

$$y(t) = x(at),$$

where a is a nonzero real number.

- If |a| > 1, the signal is compressed
- If |a| < 1, the signal is expanded
- If |a| = 1, the signal is neither expanded nor compressed

y = x(at)

ssed

is not let a let a

Time Scaling (Example of a DT Signal)

• Given a DT signal x[n], sketch the signal y[n] such that y[n] = x[2n]

n	-5	-4	-3	-2	-1	0	1	2	3	4	5
$\boldsymbol{\mathcal{X}}$	0	0	1	2	3	4	3	2	1	0	0
y	0	0	0	0	2	4	2	0	0	0	0

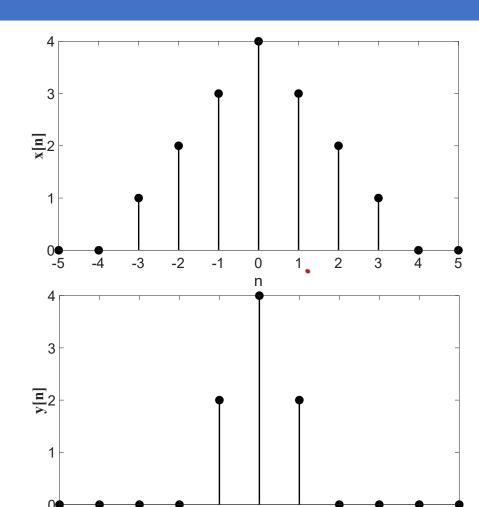
•
$$y[0] = x[2 \times 0] = x[0] = 4$$

•
$$y[1] = x[2 \times 1] = x[2] = 2$$

•
$$y[2] = x[2 \times 2] = x[4] = 0$$

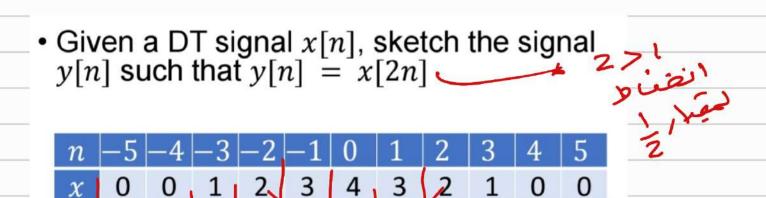
•
$$y[-1] = x[2 \times -1] = x[-2] = 2$$

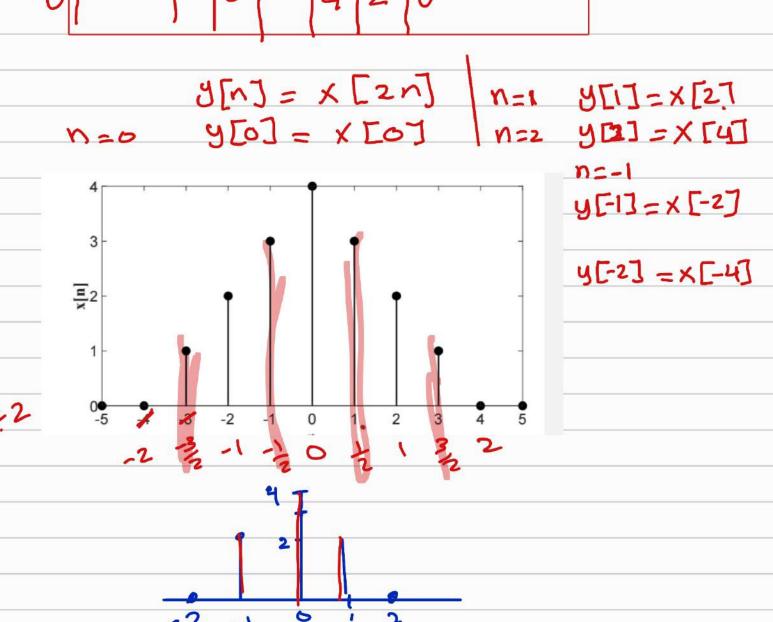
•
$$y[-2] = x[2 \times -2] = x[-4] = 0$$



Umm Al-Qura University

Imran Tasaddug





Time Scaling (Example of a DT Signal)

• Given a DT signal x[n], sketch the signal y[n] such that y[n] = x[n/2]

n	-7	-6	-5·	-4	-3	- 2	-1	0	1	2	3	4	5	6	7
χ	0	0	0	0	1	2	3	4	3	2	1	0	0	0	0
y	0	1	0	2	0	3	0	4	0	3	0	2	0	1	0

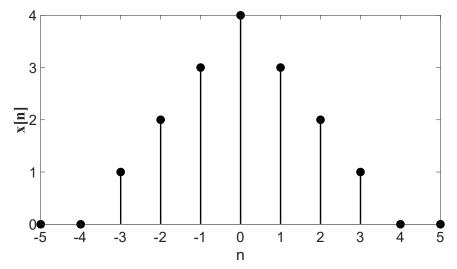
•
$$y[0] = x[0/2] = x[0] = 4$$

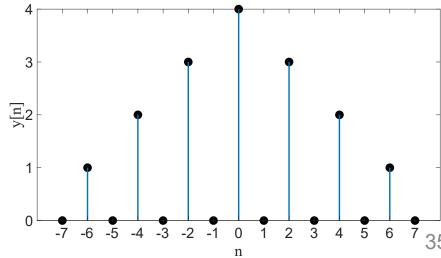
•
$$y[1] = x \left[\frac{1}{2} \right] = 0$$

•
$$y[2] = x[2/2] = x[1] = 3$$

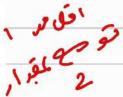
•
$$y[3] = x\left[\frac{3}{2}\right] = 0$$

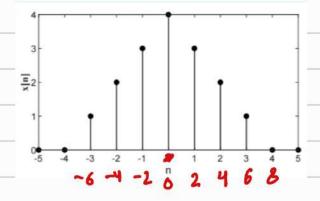
•
$$y[4] = x\left[\frac{4}{2}\right] = x[2] = 2$$

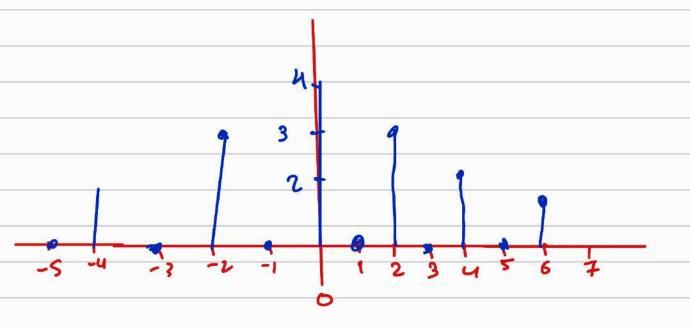




Given a DT signal x[n], sketch the signal y[n] such that y[n] = x[n/2]

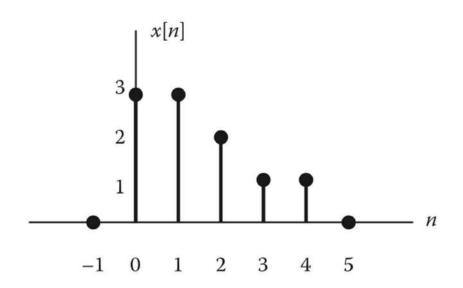


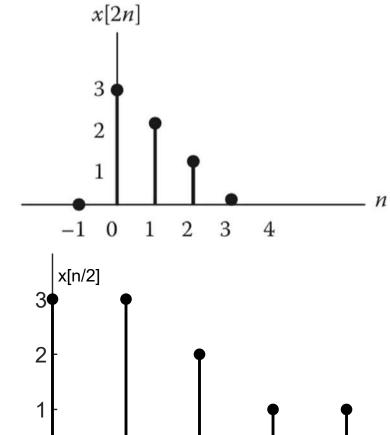




Practice Problems

7. For the signal shown, sketch x[2n] and x[n/2]





3

5

Umm Al-Qura University Imran Tasadduq 36

Amplitude Scaling of Signals

x(t) => K X(t) (>>1

Definition

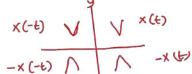
For **continuous-time (CT)** signals, amplitude (vertical) scaling maps the input x(t) to

$$y(t) = k x(t)$$
, $k \in \mathbb{C}$ (often $k \in \mathbb{R}$).

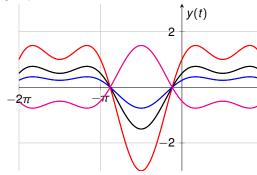
For **discrete-time (DT)** signals, amplitude scaling maps the input x[n] to

$$y[n] = k x[n]$$
, $k \in \mathbb{C}$ (often $k \in \mathbb{R}$).

- |k| > 1: **amplification** (peaks increase by |k|).
- \blacksquare 0 < |k| < 1: **attenuation** (peaks shrink by |k|).
- $\mathbf{k} = 0$: output is the **zero signal**.
- k < 0 (real): **sign inversion** (a 180° phase flip for sinusoids). If k is complex, magnitude scales by |k| and the phase is shifted by $\angle k$.



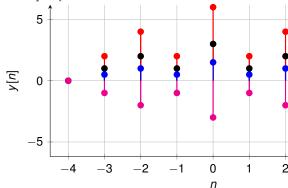
Amplitude Scaling (CT Example)



$$x(t)$$
 $y(t) = 2x(t)$ (amplified) $y(t) = \frac{1}{2}x(t)$ (attenuated) $y(t) = -x(t)$

Khaled H Almotairi Signals & Systems 12th September 2025 44 / 56

Amplitude Scaling (DT Example)



•
$$x[n]$$
 • $y[n] = 2x[n]$ (amplified) • $y[n] = \frac{1}{2}x[n]$ (attenuated) • $y[n] = -x[n]$

Khaled H Almotairi Signals & Systems 12th September 2025 45 / 56

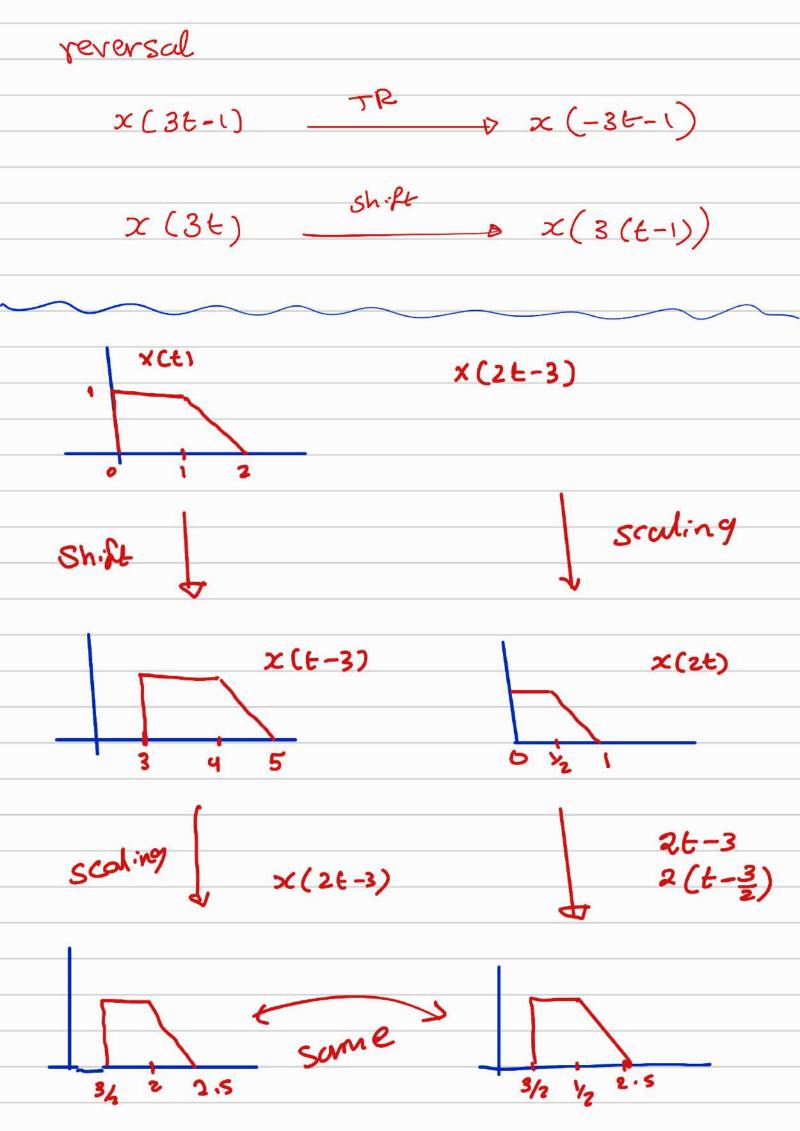
Multiple Signal Transformations

Given x(t), we want to obtain

$$y(t) = Ax(\frac{-t}{a} - \frac{t_0}{a})$$
, $A \in \mathbb{R}, a \neq 0, t_0 \in \mathbb{R}$.

Why this form?

- It separates the three time operations cleanly:
 - -t (reversal),
 - $\frac{1}{2} t t_0$ (reversal + shift), and
 - $\frac{1}{a}$ (scaling).
- Amplitude scaling (A) is independent of time operations.



Step 1: Normalize the time argument (algebra only)

Rewrite as $reversal \rightarrow shift \rightarrow scaling$

$$y(t) = Ax\left(\frac{-t - t_0}{a}\right) = Ax\left(\underbrace{-t}_{\text{reversal}}\underbrace{-t_0}_{\text{shift}}\right) \bigg|_{t \mapsto t/a} = Ax\left(\frac{-t}{a} - \frac{t_0}{a}\right).$$

Tip: First factor so every term that touches t is divided by a. That makes the three time-operations explicit and separable.

Steps 2–6: Construct y(t) from x(t)

Let x(t) be the given signal. Build y(t) via the following steps:

- (2) Plot the **original** x(t).
- (3) Plot **A x**(**t**)

→ amplitude scaling.

(4) Plot $\mathbf{A} \mathbf{x}(-\mathbf{t})$

 \rightarrow time reversal.

48 / 56

(5) Plot **A** $x(-t - t_0/a)$

 \rightarrow time shifting by t_0/a . \rightarrow time scaling by factor 1/a.

- (6) Plot **A** $x(-t/a t_0/a)$
- **Important:** These last three must keep their *relative order*: reversal \Rightarrow shift \Rightarrow scaling.

Keep the order

Reversal \Rightarrow **Shift** \Rightarrow **Scaling** (amplitude factor *A* can be applied anytime).

Example:

If
$$A = 2$$
, $t_0 = 3$, $a = 2$: $y(t) = 2x(\frac{-t-3}{2})$.

(3)
$$2x(t) \rightarrow (4) 2x(-t) \rightarrow (5) 2x(-t-1.5) \rightarrow (6) 2x(-t/2-1.5)$$
.

Priority (must-remember order)

Time-operation priority

- 1) Time Reversal \Rightarrow 2) Time Shifting \Rightarrow 3) Time Scaling
- Perform amplitude scaling *A* wherever convenient.
- Following this order guarantees a correct waveform for expressions like $x(\frac{-t}{a} \frac{t_0}{a})$.

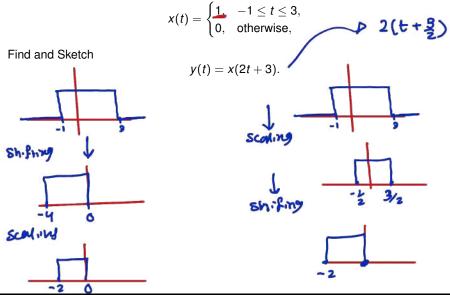
Why that order?

- Reversal first: Once the axis is flipped, <u>left/right</u> for later shifts is interpreted correctly.
- **Then shifting:** Apply the horizontal move by t_0/a on the already-reversed timeline.
- Then scaling: Stretch/compress all time marks by 1/a.
- Amplitude scaling: A can be applied anytime—it does not affect time locations.

49 / 56

Example: Multiple Signal Operations

Given the input x(t) (unit-amplitude pulse)



Khaled H Almotairi

Method 1: Time Scaling ⇒ Time Shifting (not recommended)

Step 1 (time scaling): x(2t). Support of x(t) was [-1,3]. Replace $t \mapsto 2t \Rightarrow t \mapsto t/2$:

$$x(2t) = 1$$
 on $\left[-\frac{1}{2}, \frac{3}{2}\right]$, 0 elsewhere.

Step 2 (time shifting): x(2t+3) = x(2(t+1.5)).

- The shift must be *against t*: left by 1.5.
- So $[-\frac{1}{2}, \frac{3}{2}] \mapsto [-2, 0]$.

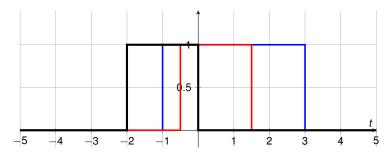
$$y(t) = 1 \text{ on } [-2, 0], 0 \text{ elsewhere.}$$

Method 1: Time Scaling ⇒ Time Shifting

■ Start with x(t) on [-1,3].

■ Scale in time: x(2t) $(t \mapsto t/2) \Rightarrow \text{support } [-\frac{1}{2}, \frac{3}{2}].$

■ Shift left by 1.5: $x(2t+3) = x(2(t+1.5)) \Rightarrow \text{support } [-2,0].$



$$--- x(t) ---- x(2t) ---- y(t) = x(2t+3)$$

52 / 56

Method 2: Time Shifting ⇒ Time Scaling

Step 1 (time shifting): x(t+3) (left by 3).

$$x(t+3) = 1$$
 on $[-4,0]$.

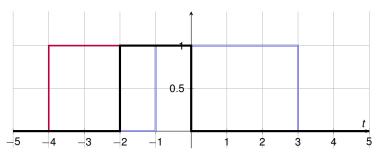
Step 2 (time scaling): now apply $t \mapsto 2t$ to obtain x(2t+3).

$$[-4,0] \xrightarrow{t\mapsto 2t} [-2,0].$$

y(t) = 1 on [-2, 0], 0 elsewhere.

Method 2: Time Shifting ⇒ Time Scaling

- Shift left by 3: $x(t+3) \Rightarrow \text{support } [-4,0]$.
- Scale in time: x(2t+3) $(t \mapsto t/2) \Rightarrow$ support [-2,0].
- Same final result as Method 1.



$$--- x(t) ---- x(t)$$
 (ref) $---- x(t+3) ---- y(t) = x(2t+3)$

54 / 56

Method 3 (Shortcut): Axis Substitution

Let s = 2t + 3. Then y(t) = x(s) has the same shape as x on the s-axis:

$$x(s) = 1 \text{ on } [-1,3].$$

Convert the axis back to t: $t = \frac{s-3}{2}$.

$$s=-1 \Rightarrow t=-2, \qquad s=3 \Rightarrow t=0.$$

$$y(t)=1 \text{ on } [-2,0], \text{ 0 elsewhere.}$$

$$2t \Rightarrow 3=3$$

$$2t \Rightarrow 3=3$$

$$2t=0 \qquad t=0$$

$$2t+3=1$$

$$2t=-4 \qquad t=-2$$

Algebraic Check

$$y(t) = x(2t+3), \quad x(\cdot) = 1 \text{ on } [-1,3].$$

-1 \le 2t + 3 \le 3 \leftrightarrow -4 \le 2t \le 0 \leftrightarrow \bigcup -2 \le t \le 0.

So y(t) = 1 on [-2, 0] and 0 elsewhere (amplitude unchanged).

Khaled H Almotairi

Signals & Systems

1. Signals and Systems

