KINGDOM OF SAUDI ARABIA
AL-IMAM MUHAMMAD BIN SAUD
ISLAMIC UNIVERSITY
FACULTY OF SCIENCES
DEPARTMENT OF PHYSICS

المملكة العربية السعودية جامعة الإمام محمد بن سعود الإسلامية كلية العلوم قسم الفيزياء

FLUID MECHANICS

[PHY 404]

Dr. Ghada Khouqeer

Physics Department

2021

Course Contents

Chapter 1: Fluid Mechanics Basics

Chapter 2: Kinematics - July 2

Chapter 3: Momentum and energy in inviscid flow

Chapter 4: Potential flow:

Chapter 5: Linear water waves

Text Books:

- 1. Introduction to Fluid Mechanics. Fox, McDonald & Pritchard, 9th Edition, Wiley.
- 2. Fluid Mechanics, Fundamental and Applications, 4th ed., Y.A. Cengeland J.M. Cimbala, McGraw Hill, 2017)

Learning Objectives

- > Basic introduction to fluid mechanics
- To know a brief history of fluid mechanics and some of the pioneers in various aspects of fluid mechanics
- To refresh some basic knowledge of dimensions and unit conversion
- To learn about some of the properties of fluids most relevant to fluid mechanics

Learning Outcomes

By the end of this unit, Student should be able to:

- > Differentiate between a fluid, a liquid and a gas.
- > Describe what fluid mechanics is all about.
- ➤ Name some of the historical figures that have a huge impact on the development of fluid mechanics over their years as well as their respective contributions.
- ➤ Recognize the importance of dimensional homogeneity in engineering calculations.
- > Handle unit conversions without error.
- ➤ Have a working knowledge of the basic properties of fluids relevant to physics and engineering.

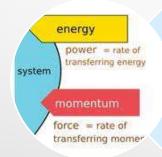
Chapter 1 Fluid Mechanics Basics

- 1.1 Introduction to Fluids
 - > Flow
 - > Pressure
 - >Properties of fluids
 - ➤ Viscosity.
- 1.2 Units and Dimension Used in Fluids

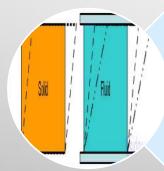
WHAT IS HYDRAULICS

- Greek word "HUDAR", means "WATER"
- It's that branch of physical and engineering science deals with water (at *rest* or in *motion*)
- Or its that branch of physical science which is based on experimental observation of water flow.

WHAT IS FLUID MECHANICS?


- Mechanics of *fluids*
- It's that branch of physical science which deals with the *behavior* of fluid under the conditions of rest & motion

Fluid Mechanics



Fluid Mechanics is a study of the behavior of Fluids either at rest (fluid statics) or in motion (fluid dynamics).

The analysis is → relate *continuity of* mass and energy with force and momentum.

Fluid is a substance which deforms continuously under the action of shearing force وكالوقي

What Is Fluid Mechanics?

اعائع هو اكاده الشيندوه سبكي مستر (مترفق) عنو لوگها لفؤى لفقى مريخ

• Fluid: a substance that continually deforms (flows) under applied shear stress

Mechanics: science concerned with behavior of physical bodies when subjected to forces

Fluid Mechanics: the science that deals with the

behavior of fluids at rest (fluid statics) or fluids in motion

(fluid dynamics), and their subsequent effects on the

surrounding environment

ما الموابع ا

APPLICATION AREAS OF FLUID MECHANICS

Natural flows and weather © Vol. 16/Photo Disc.

Boats © Vol. 5/Photo Disc.

Aircraft and spacecraft © Vol. 1/Photo Disc.

Power plants

O Vol. 57/Photo Disc.

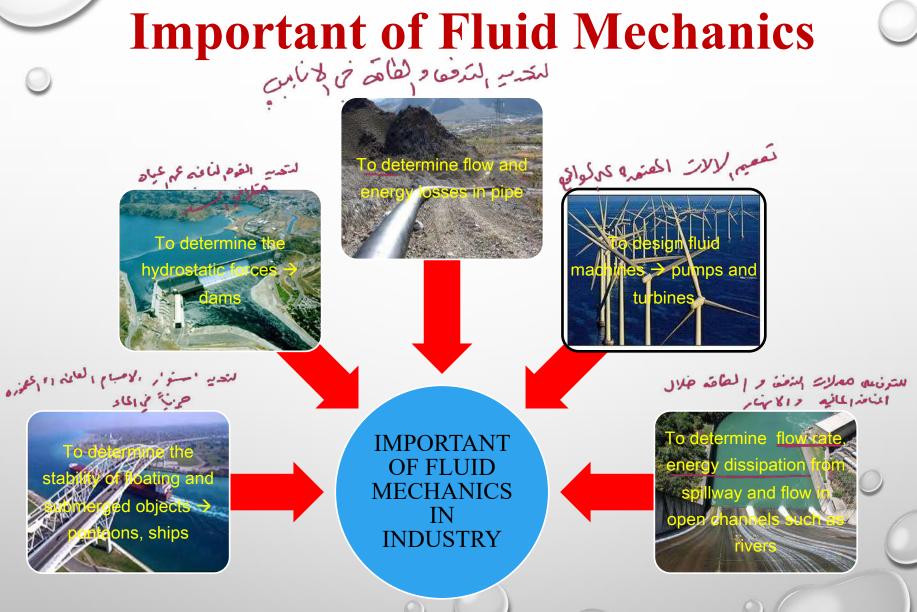
Human body

© Vol. 110/Photo Disc.

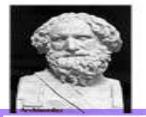
Cars

Photo by John M. Cimbala.

Wind turbines


O Vol. 17/Photo Disc.

Piping and plumbing systems Photo by John M. Cimbala.

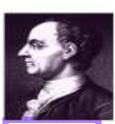


Industrial applications Courtesy UMDE Engineering, Contracting, and Trading. Used by permission.

History

Faces of Fluid Mechanics: some of the greatest minds of history have tried to solve the mysteries of fluid mechanics

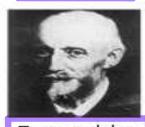
Archimedes


Da Vinci

Newton

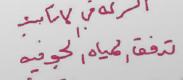
Leibniz

Euler

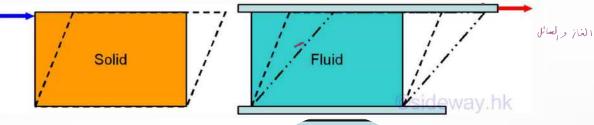

Bernoulli

Navier

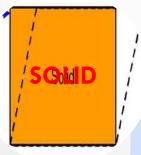
Stokes


Reynolds

Prandtl

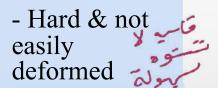

- ARCHIMEDES (285-212 BC) BUOYANCY
- ☐ BLAISE PASCAL (1623-1662) HYDROSTATICS
- □ DANIEL BERNOULLI (1700-1782) ENERGY EQUATION allow ANTONIE CHEZY (1718-1798) VELOCITY IN CHANNEL □ HENRY DARCY (1803-1858) GROUNDWATER FLOW

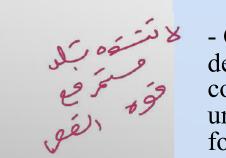
- ☐ JEAN POISEUILLE (1799-1869) LAMINAR FLOW



المِلاف في ارتباط الجريبًا ر_

Difference Between Solid and Fluid




FINELUIC

ITEM 1

- Have ملب preferred shape

- Cannot deformed continuously under shear force

- Does not have any preferred shape

- Soft & easily deformed

- Deformed continuously under shear force

Conditions of Fluids

موائع عنبرقابد للانفعاط

• The study of incompressible fluid under static conditions (hydrostatics)

موائع مآلمه للانضاط

• That dealing with the compressible static gases- aerostatics

STATICS

ستایک

واغلاله والمرادة

• Deals with the – velocities, accelerations and pattern of flow only

رجين ليتير 1

• Force and energy causing velocities and accelerations are not deal under this head.

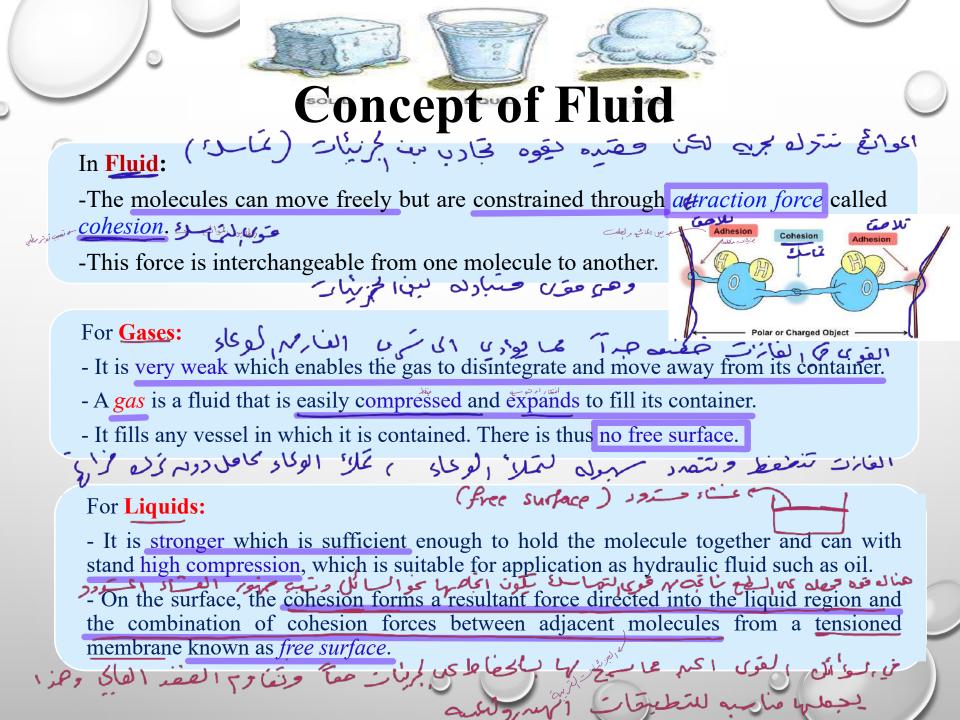
• Deal with the relationship between velocities and accelerations of fluid with the FORCES @ ENERGY causing them.

KINEMATICS

- 1. Draw molecule of solid, liquid, gas
- 2. Discuss in terms of arrangement, particles movement, closeness of particles.
- 3. Discuss shape, volume

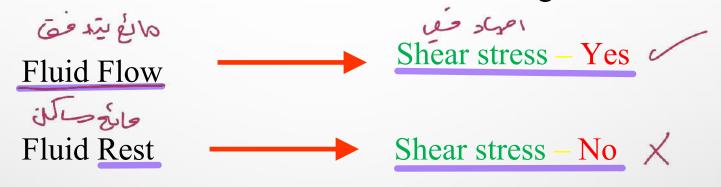
State	Solid	Liquid	Gas
Arrangement of particles	Close together Regular pattern	Close together Random	Far apart Random
Movement of particles	Vibrate on the spot	Move around each other	Move quickly in all directions
Diagram			000

State of Matter


- Gas: doesn't have any definite volume or shape
- Liquid have definite volume at any particular temperature
- Solid: have definite volume and shape

Solid Liquid Gas

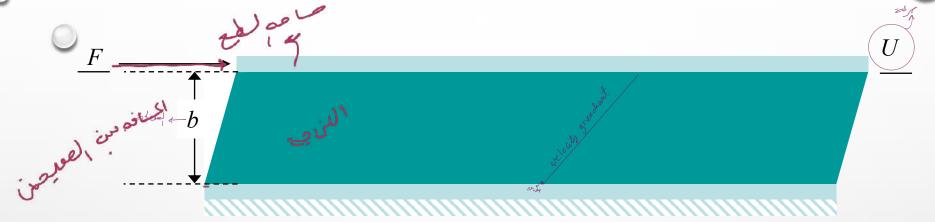
- Fluid is a substance that is capable of flowing. It has no definite shape of its own. It assumes the shape of its container.
- ➤ Both liquids and gases are fluids.


Examples: Water, milk, kerosene, petrol, emulsions etc.

Fluid

Important Facts

In fact if a shear stress is acting on a fluid it will flow and if a fluid is at rest there is no shear stress acting on it.


A fluid is a substance that flows under the action of shearing forces قوى القص . If a fluid is at rest, we know that the forces on it are in balance.

العرف من العلم و المائع هو فدرته على مفاومه الاجهارات الس سي عفيل

- Distinction between a solid and a fluid is made on the basis of the substance's ability to resist an applied shear (or tangential) stress that tends to change its shape.
- A solid can resist an applied shear stress by deforming,
- a fluid deforms continuously under the influence of shear stress, no matter how small.
- في العاد العلب الاجهار متناسب عزدى مع المطادكة
- When a constant shear force is applied, a solid eventually stops deforming, at some fixed strain angle, whereas a fluid never stops deforming and approaches a certain rate of strain. 18

المهاد مفيات على ما ده عليه عامه سوفف على المتود عندزاديه معنو لكن المواقع من المواقع من الم هدل سنوه عابة

Fluid Deformation between Parallel Plates

Side view

Force F causes the top plate to have velocity <u>U</u>.

What other parameters control how much force is required to get a desired velocity?

Distance between plates (b)

Area of plates (A)

Viscosity!

Shear stress in moving fluid

- If fluid is in motion, shear stress are developed if the particles of the fluid move relative to each other. Adjacent particles have different velocities, causing the shape of the fluid to become distorted.
 - On the other hand, the velocity of the fluid is the same at every point, no shear stress will be produced, the fluid particles are at rest relative to each other.
 - Forces acting along edges (faces), such as F, are known as shearing forces.

Moving Shear force

Fluid particles position

Fixed surface

A fluid is a substance, which deforms continuously, or flows, when subjected to shearing forces

Comparison Between Liquids and Solids

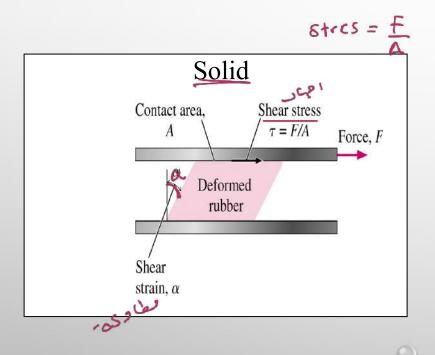
Liquid

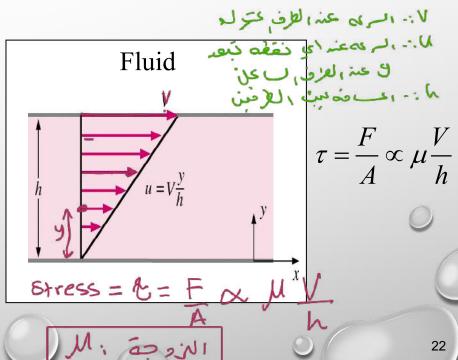
- ✓ Liquid confirm the shape of container
- ✓ Liquid can flow
- ✓ Molecules of liquid are distinctly apart
- ✓ Liquid have relatively less molecular attraction
- ✓ Liquid are slightly compressible
- ✓ Liquids cannot sustain shear forces

solid

- ✓ Do not conform the shape of container
- ✓ Solids cannot flow
- ✓ Molecules of solids are close to each other
- ✓ Solids have more molecular attraction
- ✓ Solids are highly incompressible
- ✓ Solids can sustain shear 5hear & rolling

Distinction between solid and fluid?


✓ Solid: can <u>resist</u> an applied shear by deforming.


(Stress is proportional to strain)

✓ Fluid: deforms continuously under applied shear.

(Stress is proportional to strain rate)

Units and Dimension Used in Fluid Mechanics

WHAT IS UNITS?

- Standardized system of measurements used to describe the magnitude of the dimension
- A properties that can be measured

WHAT IS DIMENSION?

الالعاد

- Measurable properties used to describe a body/system
- The standard element, in terms of which these dimensions can be described quantitatively & assigned numerical values.

Various System of Units

The primary quantities which are also referred to as basic dimensions, such as L for length, T for time, M for mass and F for force.

The various systems of units include:

- 1. System International Units (SI)
- 2. English Units (EI)

Quantity	SI Unit	English Unit
Length (L)	Meter (m)	Foot (ft)
Mass (m)	Kilogram (kg)	$\underline{\text{Slug (slug)}} = \underline{lb * sec^2/ft}$
Time (T)	Second (s)	Second (sec)
Temperature (Θ)	Celcius (°C)	Farenheit (°F)
Force (F)	Newton $(N) = kg*m/s^2$	Pound (lb)

Units and Dimension

1 Newton: Force required to accelerate 1 kg of mass to $1 m/s^2$

1 *slug*: is the mass that accelerates at $1 \frac{ft}{s^2}$ when acted upon by a force of $1 \frac{lb}{s^2}$

To remember units of a Newton use F = ma (Newton's 2^{nd} Law)

$$[F] = [m][a] = kg*m/s^2 = N = kg m/s^2$$

To remember units of a slug also use $F = ma = ma = ma = F/a = \frac{b \cdot sec^2}{ft}$

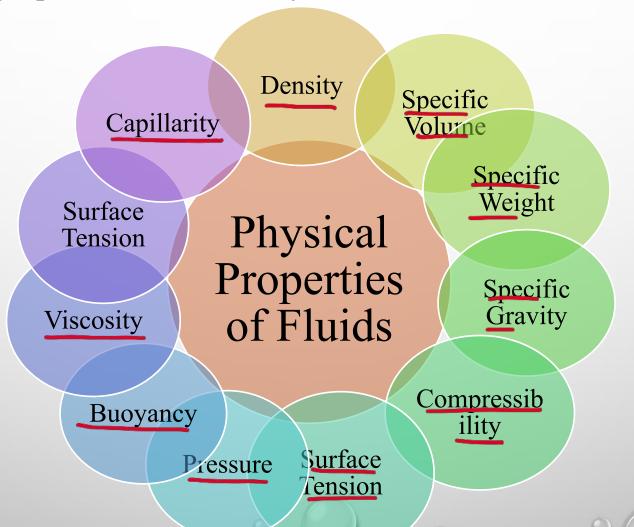
$$[m] = [F] / [a] = lb / (ft / sec^2) = lb*sec^2 / ft$$

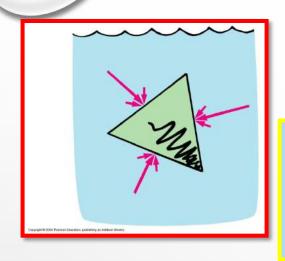
1 *lb*: is the force of gravity acting on (or weight of) a platinum standard whose mass is 0.45359243 *kg*

Factor by Which Un Is Multiplied	it Prefix	Symbo
1012	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10	deka	da
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

Derived Units

mass M Lengt L Time T

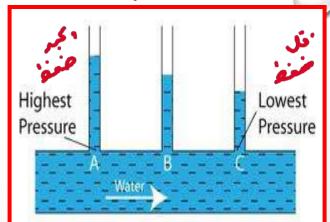

Quantity	SI Unit	100	Dimension
velocity	m/s	ms ⁻¹	LT ⁻¹
acceleration	m/s ²	ms ⁻²	LT ⁻²
force N Kg m/s²	N kg m/s ²	kg ms ⁻²	M LT ⁻²
energy (or work)	Joule J N m, kg m ² /s ²	kg m ² s ⁻²	ML^2T^{-2}
power	Watt W N m/s kg m ² /s ³	Nms ⁻¹ kg m ² s ⁻³	ML^2T^{-3}
pressure (or stress)	Pascal P, N/m ² , kg/m/s ²	Nm ⁻² kg m ⁻¹ s ⁻²	ML ⁻¹ T ⁻²
density	kg/m ³	kg m ⁻³	ML ⁻³
specific weight	N/m ³ kg/m ² /s ²	kg m ⁻² s ⁻²	ML ⁻² T ⁻²
relative density	a ratio no units	(4) E14	1 no dimension
viscosity	N s/m ² kg/m s	N sm ⁻² kg m ⁻¹ s ⁻¹	M L-1T-1
surface tension	N/m kg/s ²	Nm ⁻¹ kg s ⁻²	MT ⁻²

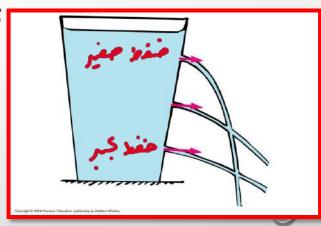

نم رهنی

26

Physical Properties of Fluids

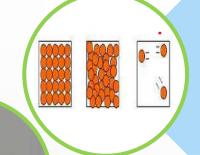
Fluid properties are intimately related to fluid behavior


Pressure


Pressure acts

perpendicular to the
surface and increases at
greater depth.

$$pressure = \frac{force}{}$$



Pressure is the force per unit area, where the force is perpendicular to the area.

A measure of the amount of force exerted on a surface area

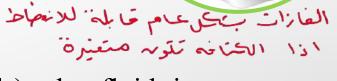
Regardless of form (solid, liquid, gas) we can define how much mass is squeezed into a particular space

Density of a material is defined by the amount of matter per unit volume.

Density of material may be referred to in many ways.

Mass Density, ρ × kg/m³

Definition


- Density of a fluid, ρ , is defined as the *mass per unit volume*
 - It is denoted by the Greek symbol, ρ .

$$\rho = \frac{\mathbf{m}}{V} \quad \text{m}^3$$

$$\rho = \frac{mass}{volume}$$

$$\rho_{air} = 1.23 \text{ kgm}^{-3}$$

- If the density is constant (most liquids), the fluid is incompressible incompressible.
- > If the density varies significantly (e.g. some gas fluids), ازا كان الكانم عترنابة متعنرة (زا الحائع the fluids is *compressible*. للويه ما بل للازجناط

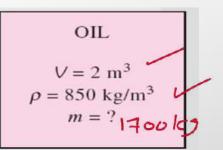
(Although gases are easy to compress, the flow may be treated as incompressible if there are no large pressure fluctuations). ع بعن جناك عيد و الغوف اذا الماده كوه عبر ماله لاصلا

$$V = \frac{m}{\rho}$$

= 850 x 2 = 1700 kg

Example:

A tank is filled with oil whose density is $\rho = 850 \text{ kg/m}^3$. If the volume of the tank is $V = 2 \text{ m}^3$, determine the amount of mass m in the tank. $\rho = \rho \vee$

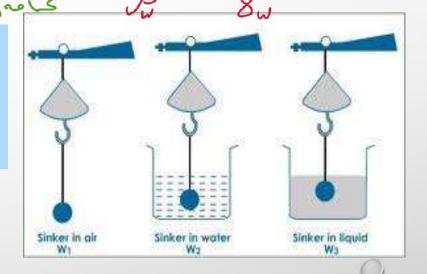

Solution:

Oil is a nearly incompressible substance and thus its density is constant.

$$m = \rho V$$

Thus,

$$m = (850 \text{kg/m}^3)(2\text{m}) = 1700 \text{ kg}$$


Relative Density at Specific Gravity, SG

SG سبه بن الحدر الوعل لهادة الى الوزف النوعي لهاء عند درمه "SG **Definition**

A ratio of the specific weight of a substance to the specific weight of water at standard temperature (4°C) and atmospheric $SG = \frac{0.01 \cdot 10.00}{20.000 \cdot 10.00} = \frac{0.000}{0.000}$

$$SG = \frac{\rho_S}{\rho_{w@4^{\circ}C}} = \frac{\gamma_S}{\gamma_{w@4^{\circ}C}}$$

Units: dimensionless

 \bullet Unit is none, since ratio is a pure number. SG is a dimensionless quantity

الورنه النوعي لا Specific Weight, γ

Definition

- \clubsuit Specific weight of a fluid, γ , is defined as the weight of the fluid per unit ورم اکے لکل ، جرد جمعے volume.
- ❖ Force exerted by gravity, g, upon unit volume of substance

$$\gamma = \frac{W}{V} = \rho g$$

Units: N/m³

$$\rho$$
 = the density of the material (kgm⁻³)
g = acceleration due to gravity (ms⁻²)

 $\gamma_{Water} = 9.81 \ X \ 10^3 \ N/m^3$ الحجم النوع : الحسم لكل مهرة كتلم الله على الكل ما (معكوم المكافع)

Specific Volume: Represents the volume per unit mass of fluid.

Specific Volume is the inverse of the mass density. v = V/m or $v = 1/\rho$

<u>Exerc</u>ises:

A reservoir of oil has a mass of 825 kg. The reservoir has a volume of 0.917 m³. Compute the density, specific weight, and specific gravity of the oil. $P = \frac{m}{V} = \frac{325}{0.917} = 900 \text{ kg/m}^3$

weight mg
$$\rho_{oil} = \frac{mass}{volume} = \frac{m}{\forall} = \frac{825}{0.917} = 900kg/m^3$$

$$825 = 900kg/m^3$$

$$829 = 900kg/m^3$$

$$8829 = 8829 N/m^3$$

$$\gamma_{\text{oil}} = \frac{\text{weight}}{\text{volume}} = \frac{\text{mg}}{\forall} = \rho g = 900 \times 9.81 = 8829 \text{ N/m}^{3}$$

$$SG_{\text{oil}} = \frac{\rho_{\text{oil}}}{\rho_{\text{w@4°C}}} = \frac{900}{1000} = 0.9$$

Density, Specific Gravity, and Mass of

Air in a room

Example:

كل العال عدى عبر ان الهواء غار منا بي

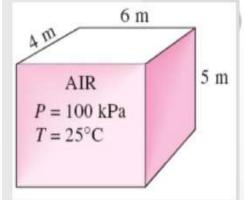
Determine the <u>density</u>, specific gravity, and <u>mass of the</u> air in a room whose dimensions are $4 \text{ m} \times 5 \text{ m} \times 6 \text{ m}$ at 100 kPa and $25 \, ^{\circ}\text{C}$.

Solution: The density, specific gravity, and mass of the air in a room are to be determined.

Assumptions: At specific conditions, air can be treated as an ideal gas.

Properties: The gas constant of air is R = 0.287 kPa. m³/ kg. K. **Analysis:** The density of the air is determined from the ideal-gas relation:

$$P = \rho(R)\Gamma$$


35

> Solution:
$$P = \frac{P}{R\Gamma} = \frac{100}{6.287 \times (25 + 243.15)} = 1.17 \text{ kg/m}^3$$

Density of Air in a room

$$\rho = \frac{P}{RT} = \frac{100kPa}{(0.287kPa.m^3 / kg.K)(25 + 273.15)K}$$

$$\rho = 1.17kg/m^3$$

> Then the specific gravity of the air:

$$SG = \frac{\rho_{air}}{\rho_{water}} = \frac{1.17 kg / m^3}{1000 kg / m^3} = 0.00117$$

$$SG = \frac{S_{a,r}}{S_{w}} = \frac{1.17}{1000}$$

$$= 0.00117$$

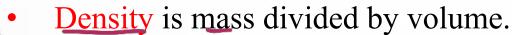
Finally, the volume and the mass of the air in the room are:

Volume:
$$V = (4 \text{ m}) (5 \text{ m})(6 \text{ m}) = 120 \text{ m}^3$$

mass:
$$m = \rho V = (1.17 \text{ kg/m}^3)(120 \text{ m}^3) = 140 \text{ kg.} = 140 \text{ kg.}$$

Gases: "Boyle's Law"

- تحالفهم لعويل
- The primary difference between a liquid and a gas is the distance between the molecules.
- In a gas, the molecules are so widely separated, that there is little interaction between the individual molecules.
- IDEAL GAS.
- Independent of what the molecules are.
- ➤ Boyle's Law
- Pressure depends on density of the gas.
- Pressure is just the force per unit area exerted by the
 - molecules as they collide with the walls of the container.


فالمرسوم

العما عف راحک فق عن راحمال منعن عن مراحف العفاظ على المراحل الوكاء Double the density, double the number of collisions with the

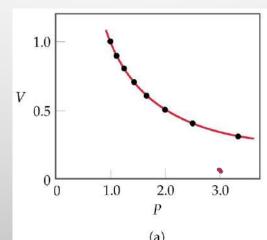
wall and this doubles the pressure.

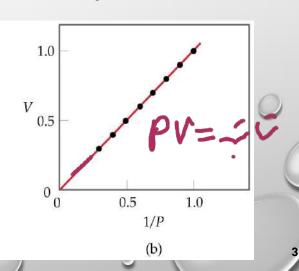
Boyle's Law

عندما يتعقد الحب للنعف يزدر لكمانه ديزرار الضغط

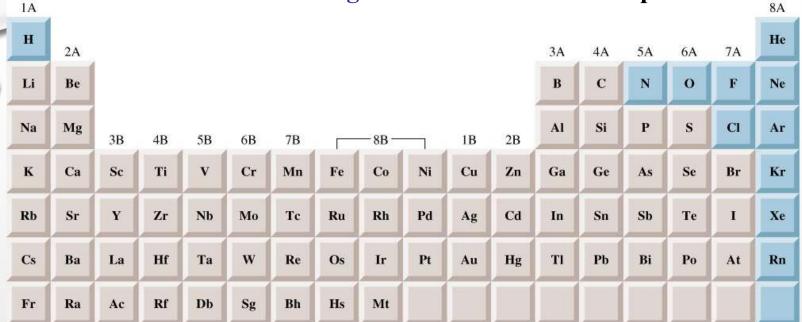
Halve the volume and you double the density and thus the pressure.

At a given temperature for a given quantity of gas, the product of PV= &C


the pressure and the volume is a constant.


$$V = P$$
 النامب عبي مين $P \propto 1/V$

ڪثانع


Px. V = constant

$$P_1 \cdot V_1 = P_2 \cdot V_2$$

Elements that exist as gases at 25°C and 1 atmosphere

Example

A sample of gas contained in a flask with a volume of 1.53 L and kept at a pressure

of 5.6×10³ Pa. If the pressure is changed to 1.5×10⁴ Pa at constant temperature, what

√ 1 √ 2 √ 2 √ 3 √ 4

$$V_2 = \frac{P_1 V_1}{P_2} = \frac{5.6 \times 10^3 \times 1.53}{1.5 \times 10^4} = 0.572$$

V2 = 154

A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg. What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154 mL?

$$P_1 \times V_1 = P_2 \times V_2$$
 $P_2 = V_1 P_1$

$$P_1 = 726 \text{ mmHg}$$

$$V_1 = 946 \text{ mL}$$

$$P_2 = ? = 946x726$$

$$V_2 = 154 \text{ mL} = 4460$$

$$P_2 = \frac{P_1 \times V_1}{V_2} = \frac{726 \text{ mmHg x } 946 \text{ mL}}{154 \text{ mL}} = 4460 \text{ mmHg}$$

حًا حوم الفاء اعتيى **Ideal Gas Law**

Gases are highly compressible in comparison to liquids, with changes in gas density directly related to changes in pressure and temperature through the equation:

$$P = \rho RT$$

Where, P is the absolute pressure, ρ is the gas density, R is the P= PRT

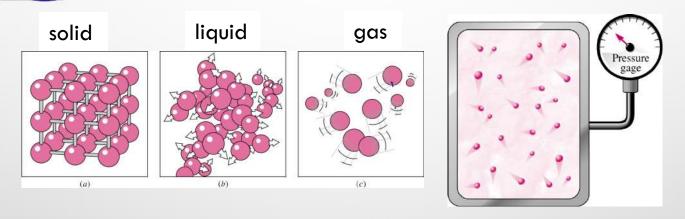
gas constant, T is the absolute temperature.

SI unit of the temperature is the Kelvin scale.

$$T(K) = T(^{0}C) + 273$$

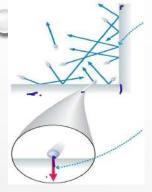
General gas Law:

Many gases can be treated as ideal gases:


•Air – nitrogen, oxygen, hydrogen, helium, argon, neon, krypton and carbon dioxide.

Pressure

On a microscopic scale, pressure is determined by the <u>interaction</u> of individual gas molecules


Intermolecular bonds are <u>strongest</u> in <u>solids</u> and weakest in <u>gases</u>.

Where molecules in solids are <u>closely packed</u> together, whereas in gases they are separated by relatively large distances

The arrangement of atoms in different phases:

- a) Molecules are at relatively fixes positions in a solid
- b) Groups of molecules move about each other in the liquid phase
- c) Individual molecules move about at random in the gas phase.

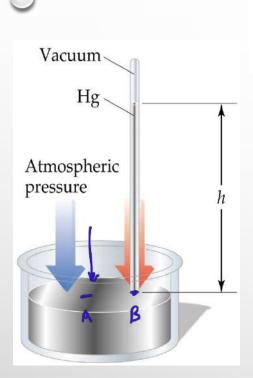
- ✓ A very large number of collisions happen each second.
- ✓ Each collision exerts a tiny net force on the wall.
- A fluid in a container presses with an outward force against the walls of that container.

Pressure is defined as the ratio of the force to the area, where the force is perpendicular to the area. $\boxed{\pm} = \boxed{\pm} \boxed{\pm} = \boxed{\pm}$

$$Nm^{-2} p = \frac{F}{A} \qquad m^{2}$$
(Pa)

The SI units of pressure are N/m^2 , also defined as the pascal, where 1 pascal = 1 Pa = $1 N/m^2$. Other units:

1 atm=
$$1.01 \times 10^{5}$$
 Pa 1.01 25 Vio
1 mmHg = 133 Pa
1 kPa = 10^{3} Pa
1 psi = 6890 Pa


This is the <u>Absolute pressure</u>, the pressure compared to <u>a vacuum</u>.

الضغظ كفلق

الفعظ عطلة: - الفنظ سم كم الوائ

Atmosphere Pressure

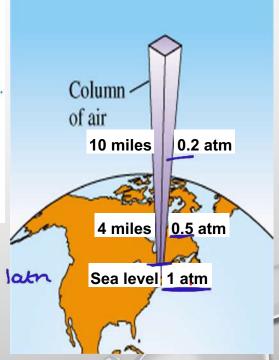
عند الای نوا الفعار والمحکفة
The pressure and density decrease with increasing height in the atmosphere

$$P = \frac{F}{A}$$
 Space

Walls of an imaginary container

Air

- 3. The density and pressure approach zero in outer space.
- 2. Because of gravity, the density and pressure decrease with increasing height.
- 1. The air's density and pressure are greatest at the earth's surface.


• Standard atmospheric pressure = 760 mm of Hg = late

· Earth

•1 atm = 760 mmHg = 760 torr = 101.325 kPa.

Par

The global average sea-level pressure is 1 atm

1.01x105

متهالفعل الحوى عنرطع البح

الفعظ العارض Gauges Pressure

Pressure gauges: such as tire gauges and blood pressure monitors, measure not the actual or absolute pressure p but what is called gauge pressure $p_{\rm g}$.

where 1 atm = 1.01×10^5 Pa.

• i.e "120 over 80" means the maximum gauge pressure in your arteries is 120 mmHg or 1.6×10⁴ Pa. 6 120 x 1.01 x 105 = 1.6 x 10

• The actual, or "absolute" pressure in your arteries has a maximum of

$$p = p_g + 1$$
atm
= 1.6×10⁴ + 1.01×10⁵ Pa = 1.17×10⁵ Pa

الضعف كعلق

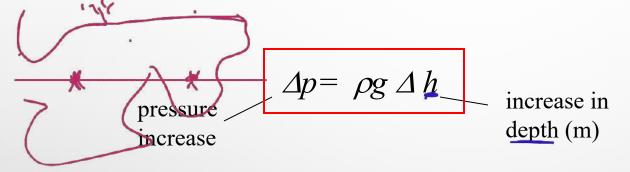
Absolute Pressure

الفعظ لكالهِ (مفلق) = الفعظ المعياري + الفعظ (كوي

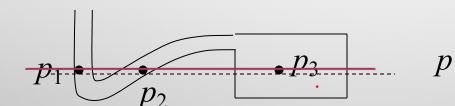
Pressure measured above $f = f_{g+} + f_{atm}$ a perfect vacuum (zero)
is known as absolute pressure

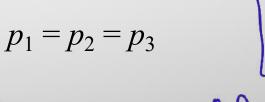
Absolute pressure is
$$p_{absolute} = \rho g h + p_{atmospheric}$$

Absolute pressure = Gauge pressure + Atmospheric


الضغ سنامه فع للق

Variation of Pressure with depth


الفط ني لوائع لوائم سنك عسف المرابع الموائع لوائم الماء Pressure in a fluid acts equally in all directions


يندر الغط مفيا مع اللق

Pressure in a static liquid increases linearly with depth

Po= 19h The pressure at a given depth in a continuous, static body of liquid is constant.

Example: (a) What are the absolute pressure and (b) the total force on the bottom of a swimming pool 22.0 m by 8.5 m whose uniform depth is 2.0 m? (c) What will be the pressure against the *side* of the pool near the bottom?

The absolute pressure is given by $P=P_0+\rho gh$, and

the total force is the absolute pressure times the area of the bottom of the pool. $P = P_3 + P_{atm} = P_3h + 1.01 \times 10^5$

(a)
$$P = P_0 + \rho g h = 1.013 \times 10^5 \text{ N/m}^2 + (1.00 \times 10^3 \text{ kg/m}^3)(9.80 \text{ m/s}^2)(2.0 \text{ m})$$

 $= 1.21 \times 10^5 \text{ N/m}^2$ $P = 1000 \times 9.8 \times 2 \times 1.013 \times 10^5 = 1.21 \times 10^5 \text{ Pa}$

(b)
$$F = PA = (1.21 \times 10^5 \text{ N/m}^2)(22.0 \text{ m})(8.5 \text{ m}) = 2.3 \times 10^7 \text{ N}$$

(c) The pressure against the side of the pool, near the bottom, will be the N

(c) The pressure against the side of the pool, near the bottom, will be the same as the pressure at the bottom,

$$P = 1.21 \times 10^5 \text{ N/m}^2$$