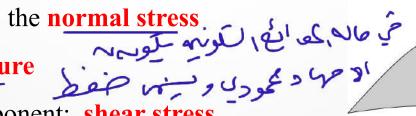

Fluids at rest

Stress on an object submerged in a static fluid

The force exerted by a static fluid <u>on an object</u> is always <u>perpendicular</u> to the <u>surfaces</u> of the object.

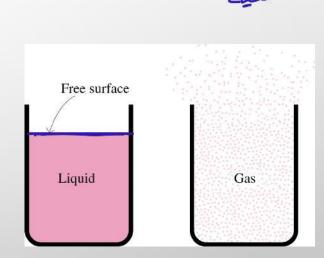
The force exerted by the fluid on the walls of the container is **perpendicular** to the walls at all points.

Fluid Stress


Normal to surface

> Force acting on area dA

> > Tangent to surface


- Stress is defined as the force per unit area.
- Normal component: normal stress

In a fluid at rest, the **normal stress**. is called pressure

- A liquid takes the shape of the container it is in and forms a free surface in the presence of gravity
- A gas expands until it encounters the walls of the container and fills the entire available space. Gases cannot form a free surface
- Gas and vapor are often used as synonymous words

Shear stress and pressure

Consider a force, \vec{F} , acting on a 2D region of area A sitting on x-y plane

$$\vec{F} = F_x (\pm \hat{i}) + F_y (\pm \hat{j}) + F_z (\pm \hat{k})$$

For simplicity, let $F_v = 0$

$$\tau = \frac{F_x}{A} \quad (shear \ stress)$$

$$\tau = \frac{F_x}{A} \quad (shear stress) \qquad p = \frac{F_z}{A} \quad (normal stress (pressure))$$

Shear stress and pressure at a point

$$\tau = \left(\frac{F_x}{A}\right)_{\lim A \to 0} \qquad p = \left(\frac{F_z}{A}\right)_{\lim A \to 0}$$

$$p = \left(\frac{F_z}{A}\right)_{\lim A \to 0}$$

• Units of stress (shear stress and pressure)
$$\frac{|F|}{[A]} = \frac{N}{m^2} = Pa \text{ (Pascal) in SI units}$$

$$\frac{[F]}{[A]} = \frac{lb}{in^2} = psi \text{ (pounds per square inch) in English units}$$

$$\frac{[F]}{[A]} = \frac{lb}{ft^2} = pounds per square foot (English units)$$

Note

Fluids are either liquids or gases:

Liquid: A state of matter in which the molecules are relatively free to change their positions with respect to each other but restricted by cohesive forces so it can maintain a relatively fixed volume.

Gas: a state of matter in which the molecules are practically unrestricted by cohesive forces. A gas has neither definite shape nor volume.

** Fluids considered in this course move under the action of a <u>shear</u> <u>stress</u>, no matter how small that shear stress may be (unlike solids)

Continuum View of Fluids

عَلَىٰ اعتبار اكوانع ففاع مستعر (يترك ويتوزع تبي لوعاد

- Convenient to assume <u>fluids</u> are continuously distributed throughout the region of interest. That is, the fluid is treated as a <u>continuum</u>
- This continuum model allows us to not have to deal with molecular interactions directly. We will account for such interactions indirectly via viscosity
 A good way to determine if the continuum model is acceptable is
- A good way to determine if the <u>continuum</u> model is acceptable is to compare a characteristic length (L) of the flow region with the mean free path of molecules.
- If $L << \lambda$, Continuum model is valid L with λ with $\lambda << \lambda$ Mean free path (λ) : Note that a molecule travels before it collides with another molecule.

الله الموسط عن المح هو هنوط لحل ف الله المحمد المح هنوط المحمد المح هنوط المحمد المحم

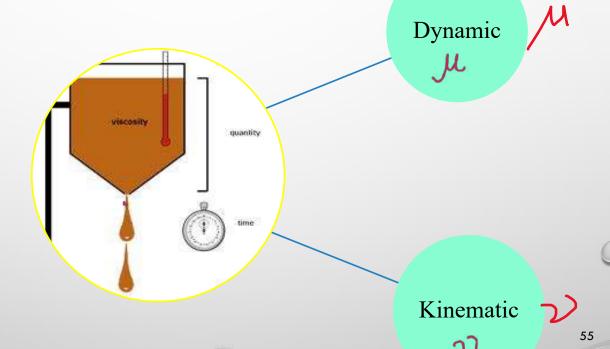
Viscosity حبالا

- Viscosity, (μ) is the property of a fluid, due to cohesion and interaction between molecules, which offers resistance to shear deformation.
 - Different fluids deform at different rates under the same shear stress. The ease with which a fluid pours is an indication of its viscosity.
 - Fluid with a high viscosity such as syrup deforms more slowly than fluid with a low viscosity such as water. The viscosity is also known as dynamic viscosity.

Units: $N.s/m^2$ or kg/m/s

Typical values:

Water =
$$1.14 \times 10^{-3} \text{ kg/m/s}$$
;


اعوائم الس توه بععوب مثل العل کالزوجه ۱ کبرمن اکود التات وه سموله

Air =
$$1.78 \times 10^{-5} \text{ kg/m/s}$$

Viscosity

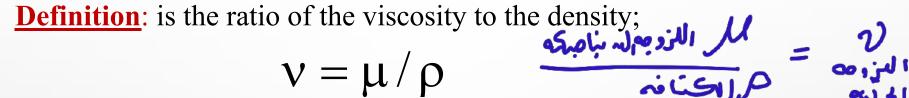
- ❖ A simulation of substances with different viscosities.
- The substance above has lower viscosity than the substance below.

Dynamic viscosity, µ

Definition

- * Dynamic viscosity, μ , is defined as the *Shear force per unit* area (shear stress, τ) needed to drag a layer of fluid with a unit
- velocity past another layer at a unit distance away from it in the fluid المان الما
- ★ Measure of internal friction of fluid particles
 - Molecular cohesiveness
 - Resistance fluid has to shear (or flow) د

$$M = \frac{\dot{t}}{\left(\frac{du}{dy}\right)}$$


Water:
$$1.14 \times 10^{-3} \ kgm^{-1}s^{-1}$$

ال: - حتى العق اعوان المراجم المساحة

Air: $1.78 \times 10^{-5} \, kgm^{-1}s^{-1}$

Units: Nsm^{-2} or $kgm^{-1}s^{-1}$ or Pa.s or poise $(10 Poise = 1 Nsm^{-2})$

Kinematic viscosity, \boldsymbol{v}

$$v = \mu / \rho$$

• will be found to be important in cases in which significant viscous and gravitational forces exist. $V = \frac{1.14 \times 10^{-3}}{1000} = 1.14 \times 10^{-3}$

Typical values:

Water =
$$1.14 \times 10^{-6} \text{ m}^2/\text{s}$$
; $Air = 1.46 \times 10^{-5} \text{ m}^2/\text{s}$;

$$Air = 1.46 \times 10^{-5} \text{ m}^2/\text{s}$$

In general,

- ✓ viscosity of liquids, with temperature, whereas
- کا ز در در می کور می کان لاز رجم کور می کان در در می کور می کان لاز رجم کور می کان در می کان در می کور می کان در می کا

Viscosity in Gases & Liquids

Viscosity in gases

- Due to intermolecular collision between randomly moving particles
- For gas, temperature, amount of intermolecular collision, viscosity

خوالفازات عند زیاره درمه / اره نیزد در المفادمات و نیزدد الله و بهط

Viscosity in liquid

- Due to intermolecular collision between liquid particles
- For liquid, temperature , intermolecular collision is weak, viscosity لمن زباده درجه کار، خصع المقادمات اطبعت

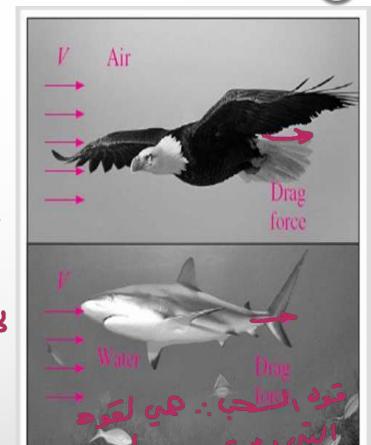
Facts

الكزرمية تدل عد الك معم لدافله للرفق الجربان (السيلة)

Viscosity: A property that represents the

internal resistance of a fluid to motion or the "fluidity"

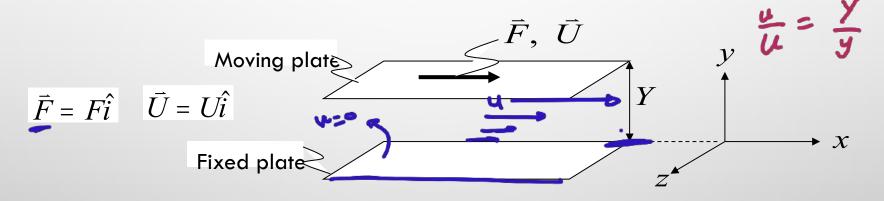
Drag force: The force a flowing fluid exerts on a body in the flow direction. The magnitude of this force depends, in part, in *viscosity*.


Viscosity is important, for example,

To determine the amount of fluids that can be transported in a pipeline during a specific

period of time.

To determine the energy losses associated with transport of fluids in ducts, channels and pipes.


Viscosity is due to the internal frictional force that develops between different layers of fluids as they are forced to move relative to each other. ب للزوجه عو فتوى الاصكال الني تكه

Viscosity (μ)

No slip condition

- اعانع اكلاهف لعيره عيرمترك عركنه جو
- Because of viscosity, at boundaries (walls) particles of fluid adhere to the walls, and so the fluid velocity is zero relative to the wall
- Viscosity and associated shear stress may be explained via the following: flow between no-slip parallel plates.
- Flow between no-slip parallel plates each plate has area A

Force \vec{F} induces velocity \vec{U} on top plate. At top plate flow velocity is \vec{U}

The velocity induced by moving top plate can be sketched as follows:

The velocity induced by top plate is expressed as follows:

$$u(y) = \left(\frac{U}{Y}\right)y$$

For a large class of fluids, empirically, $F \propto \frac{AU}{V}$

More specifically,
$$F = \mu \frac{AU}{V}$$
; μ is coefficient of viscosity

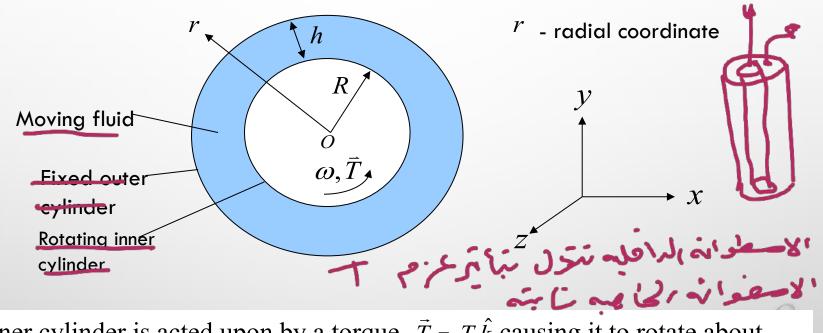
Shear stress induced by F is
$$\tau = \frac{F}{A} = \mu \frac{U}{V}$$
 From previous slide, note that

$$\tau \triangleq \frac{F}{A} = \mu \frac{U}{Y}$$

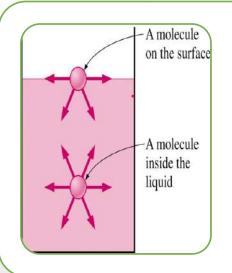
$$\frac{du}{dv} = \frac{U}{V}$$

Thus, shear stress is

$$\tau = \mu \frac{du}{dy}$$


In general, we may use previous expression to find shear stress at a point inside a moving fluid. Note that if fluid is at rest this stress is zero because

Viscometer


Coefficient of viscosity μ can be measured empirically using a viscometer

Example: Flow between two concentric cylinders (viscometer) of length L

Inner cylinder is acted upon by a torque, $\vec{T} = T\hat{k}$ causing it to rotate about point O at a constant angular velocity ω and causing fluid to flow. Find an expression for \vec{T}

المؤتر، ليصني Surface Tension, **o**

Surface tension:

- Defined as the force acting a unit length of a line drawn in the <u>liquid surface</u>

Cohesion

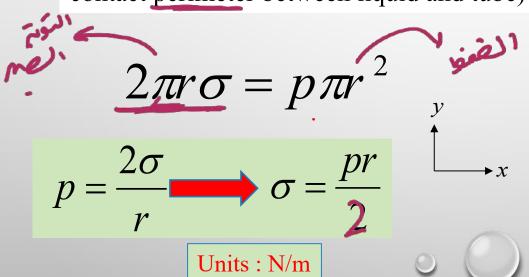
العقود ا كو كر أن كل و كر و حول كال خطومه م

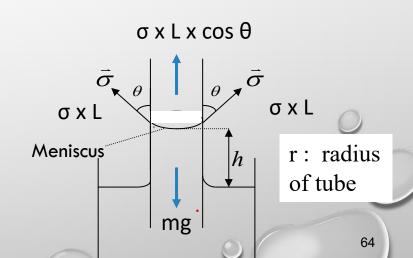
يعل ١٥٥ نقيل مسامه العلج عا يجعل العَظِرات تاعذ تتعلق

- Surface tension tend to reduce the surface area of a body of liquid
- The internal pressure within the droplet, p and the surface tension forces,σ must be in equilibrium.

الضفط الداخلي في لقطون ٩ و المؤتر الطعب كي ميونان برماله

قوی بنو کر النصی کلوم عوده ی الفلام


• Taking vertical equilibrium of the forces acting on the droplet


• The magnitude of surface tension forces are very small compared to other forces

• Normally are neglected

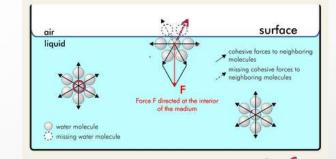
غالباستم معان

• Surface tension vector (acts uniformly along contact perimeter between liquid and tube)

Cohesion

مقاسلاخ Adhesion of water molecules to the tube dominates over cohesion between

water molecules giving rise to $\bar{\mathcal{Q}}$ and causing fluid to rise within tube


$$\vec{\sigma} = \sigma \hat{n}$$

• unit vector in direction of $\bar{\sigma}$

$$\sigma$$
 surface tension (magnitude of $\bar{\sigma}$)

$$\vec{\sigma} = \sigma \left[\sin \theta(\hat{i}) + \cos \theta(\hat{j}) \right]$$
 $[\sigma] = \frac{\text{force}}{\text{length}}$

Given conditions in previous slide, what is σ ?

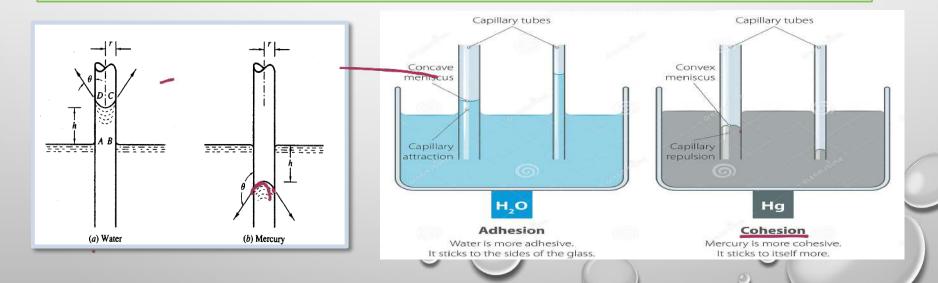
$$\begin{array}{c|c}
y & \vec{\sigma} & \theta \\
\downarrow & h \\
\vec{W} & \vec{V}
\end{array}$$

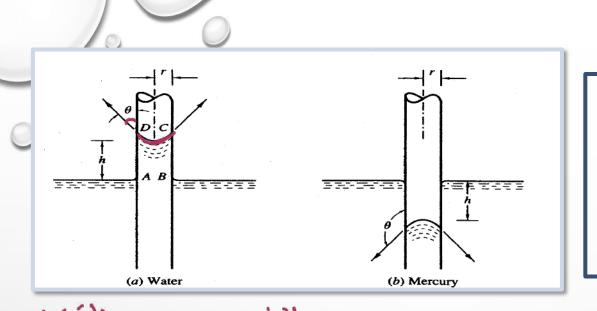
$$\vec{\sigma} = \sigma \left[\sin \theta(\hat{i}) + \cos \theta(\hat{j}) \right]$$

$$\vec{W} = W(-\hat{j})$$
 (weight vector of water)

Equilibrium in y-direction yields:
$$\sigma \cos \theta (2\pi r) (\hat{j}) + W(-\hat{j}) = 0 \hat{j}$$

Thus
$$\sigma = \frac{W}{2\pi r \cos \theta}$$
 with $W = \gamma_{water} \pi r^2 h$


Capillarity Spiel


When a liquid comes into contact with a solid surface:

- <u>Adhesion</u> forces: forces between <u>solid</u> and <u>liquid</u>
- Cohesion forces: forces within liquid

- Cohesion forces: forces within liquid

If <u>cohesive forces</u> > <u>adhesive forces</u>, the meniscus in a glass tube will the liquid concaves down in order to reduce contact with the surface of the wall as in figure (b). When the adhesive force of the liquid to the wall > the cohesive force of the liquid, the liquid is more attracted to the wall than its neighbors, causing the upward concavity. (b).

الناميتر التعييد

Capillary effect is the rise or fall of a liquid in a smalldiameter tube

$$h = \frac{4\sigma\cos\theta}{\rho gd} \quad \text{or} \quad h = \frac{4\sigma\cos\theta}{\gamma d} \quad \text{or} \quad h = \frac{2\sigma\cos\theta}{\rho gr}$$

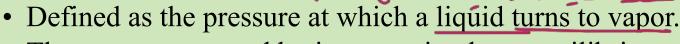
Units= m or mm

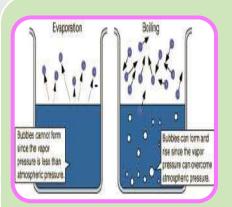
where h = height of capillary rise (or depression)

 σ = surface tension

 θ = wetting (contact) angle

 γ = specific weight of liquid


r = radius of tube


Vapor pressure

The pressure exerted by its vapor in phase equilibrium with its liquid at a given temperature
 The molecules which moves above the surface of the

• The molecules which moves above the surface of the liquid exert pressure in the confined surface

•Under this equilibrium we call the vapor pressure the saturation pressure saturation satu

•At any given temperature, if pressure on liquid surface falls below the the saturation pressure, rapid evaporation occurs (i.e. boiling). For a given temperature, the saturation pressure is the boiling pressure

 $P_{vapour} = P_{\underline{saturation}}$

Units: N/m² or Pascal

ي حساب متفعد الاصلياع = الفعظ السخاري عند الفلدار

- Compressibility المعنور المعن
 - •Compressibility is the change in volume due to a change in pressure
 - •A good measure of compressibility is the bulk modulus (It is inversely proportional to compressibility)

$$\mathbf{B}_{v} = -\mathbf{V} \frac{dp}{d\mathbf{V}} \qquad v = \frac{1}{\rho} \mathbf{v}$$
 specific volume) $p \text{ is pressure}$

$$v = \frac{1}{\rho} = \frac{1}{\rho} specific volume$$


•From previous expression we may write
$$\frac{(\upsilon_{fingl} - \upsilon_{initial})}{\upsilon_{initial}} \approx -\frac{(p_{final} - p_{initial})}{2} = 320,000 \text{ psi}$$

$$= 320,000 \ psi$$

- •For water at 15 psi and 68 degrees Fahrenheit,
- •From above expression, increasing pressure by 1000 psi will compress the water by only 1/320 (0.3%) of its original volume
- •Thus, water may be treated as incompressible (density (ρ) is constant)
- المعترفة المحبر الماء كان عضراره على جرآ رلمينر كاء عنر فلالسنعال المعترفة for certain fluids

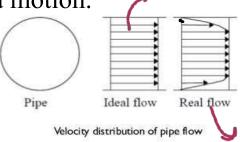
Types of Fluid

Fluids can be classified into five basic types. They are:

1. Ideal Fluid:

A fluid is said to be ideal if it is assumed to be both incompressible and inviscid (non-viscous).

مائع منابي


- An Ideal Fluid is a fluid that has no viscosity (inviscid) and المرزوم عن
- no frictional forces.
- ✓ It is incompressible in nature.
- ✓ no surface tension reset up even during the fluid motion.
- ✓ Practically, no ideal fluid exists.

2. Real Fluid: اعانها کفیا

Practical Fluid have surface tension, viscosity and compressibility.

- ✓ Real fluids are compressible in nature. They have some viscosity.
- ✓ Real fluids implies friction effects.

Examples: Kerosene, Petrol, Castor oil

لدوق عسر

<u>صوایکه لهنه نرانخن :</u>

3 PSEUDO-PLASTIC FLUID;

- A fluid whose apparent viscosity or consistency decreases instantaneously with an increase in shear rate.
- **Examples:** quick sand and ketch-مائع تعلى خ و من و است قد بستان ... up etc.. مائع تعلى خواد من و است قد الم من المام المام المام المام المام ا

4 Newtonian fluid:

- Fluids that obey Newton's law of viscosity. For a Newtonian fluid,
- viscosity is entirely dependent upon the temperature and pressure of the age of the fluid. عدد بعد المزادة و الضفط رياستنز مع مقد العقد Examples: water, air, emulsions

5 Non-Newtonian Fluids

- Fluids that do not obey Newton's law of viscosity are non-Newtonian الاسبع ف نون ديو سن الاسبع ف نون ديو سن
- Examples: Flubber, Oobleck (suspension of starch in water), Pastes, Gels & Polymer solutions

Newtonian and Non-Newtonian Fluid

Newton's' law of viscosity is given by;

where, $\tau = \text{shear stress}$ $\mu = \text{viscosity of fluid}$ du/dy = shear rate, rate of strain or velocity gradient

of the fluid,

Example:

Gasoline

Alcohol

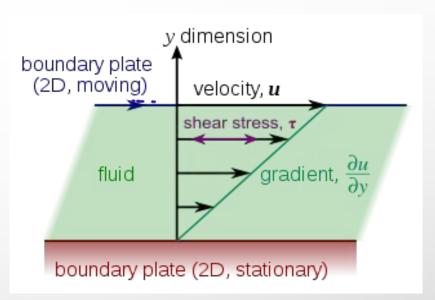
Kerosene Benzene

Air Water

Oil

- The viscosity μ is a function only of the condition of the fluid, particularly its temperature.
- The magnitude of the velocity gradient (du/dy) has no effect on the magnitude of μ .

Newton's equation of viscosity


Shear stress due to viscosity at a point:

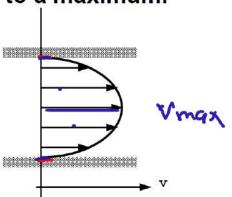
$$\tau = \underbrace{\mu}_{dy}^{du}$$

Kinematic viscosity

$$V = \frac{\mu}{\rho}$$

 μ : viscosity (coefficient of viscosity)

Newton's Law of Viscosity is very useful to us as we can use it to evaluate the <u>shear stress</u> (and ultimately the shear force) exerted by moving fluid onto the fluid's boundaries.


$$\tau$$
 at boundary = $\mu \left(\frac{du}{dy} \right)_{at boundary}$

Note y is direction normal to the boundary

Velocity gradient

The fluid "sticks" to the wall.

Moving away from the wall velocity increases to a maximum.

Change in velocity with distance is "velocity gradient" = $\frac{du}{dt}$

Plotting the velocity across the section gives "velocity profile"

So:

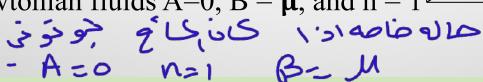
Shear stress, τ , is the force per unit area:

$$\tau = \frac{F}{A}$$

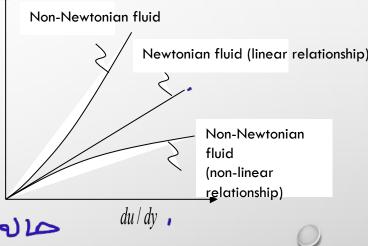
U/y is the rate of change of velocity with distance

in differential form this is
$$\frac{du}{dy}$$
 = velocity gradient.

Non-Newtonian Fluid
سعف المعالمة المعا


- Some fluids do not have constant μ \longrightarrow They don't obey Newton's Law of viscosity.
- They do obey a similar relationship and can be placed into several clear categories $\tau(due to vis cosity)$

The general relationship is:


$$\tau = A + B \left(\frac{du}{dy}\right)^n$$

where A, B and n are constants.

For Newtonian fluids A=0, $B = \mu$, and n = 1

In this course we will only deal with Newtonian fluids

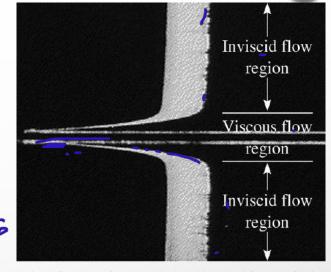
Classification of Flows

Fully developed velocity profile, V(r)

المناطق المزحه وعنر اللزمه مي المتعق

Viscous vs. Inviscid Regions of Flow

- Viscous flows: موجود لاعكن الهال عنور لاعكن الهالا Flows in which the frictional effects are significant.
- **Inviscid flow regions:**


In many flows of practical interest, there are regions (typically regions not close to solid surfaces) where viscous forces are negligibly small compared to inertial قريصية الاماكن (حصوص بيسه عمل كار) or pressure forces الاماكن (حصوص بيسه مقار لله مع ، لعنعماء العرب المله

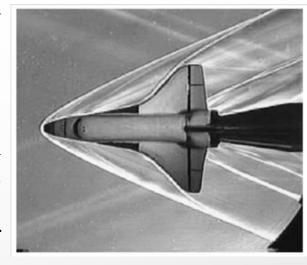
> Internal vs. External Flow

Internal flows are dominated by the influence of viscosity throughout the flow field التدفق بداخلي المعالمة المعال

the boundary layer and wake.

Developing velocity

The flow of an originally uniform fluid stream over a flat plate, and the regions of viscous flow (next to the plate on both sides) and inviscid flow (away from the plate).



تعفف انضعاض صقابل

- Compressible vs. Incompressible Flow
- A flow is classified as incompressible if the density الكتافة تعزيبا تابه عد عبر فابلابعناط remains nearly constant.
 - Liquid flows are typically incompressible.
 - Gas flows are often compressible, especially for high العان عنى عالمه للانفعام العامة عالم الدنفعاط عنموها بالركات لعالمه اللانفعاط عنموها بالركات لعالمه Mach number, Ma = V/c is a good indicator of whether
 - or not compressibility effects are important.

$$Ma = \frac{V}{c} = \frac{\text{Speed of flow}}{\text{Speed of sound}} \xrightarrow{\text{Speed of sou$$

- Ma < 0.3 : Incompressible
- Ma < 1: Subsonic ••3< M<)
- نگونی Ma = 1 : Sonic
- Ma > 1 : Supersonic
 - Ma >> 1: Hypersonic

Schlieren image of a small model of the space shuttle orbiter being tested shocks are seen in the surrounding the spacecraft.

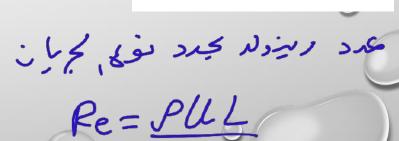
جهان منتطم ومدمن اصطری

خليط بين التوعنين

Laminar vs. Turbulent Flow

Laminar: highly ordered fluid motion with smooth عظعط جريان على اء و متواريه streamlines.

Turbulent: highly disordered fluid motion مرفئ عرصنع عبوري سمير بنعلبات المريد هان characterized by velocity fluctuations and eddies.


Transitional:

flow that contains both laminar and turbulent regions

Reynolds number:

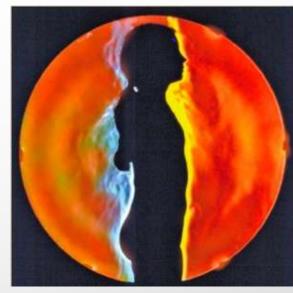
 $R_e = \rho U L/\mu$ is the key parameter in determining whether or not a flow is laminar or turbulent.

Re < 2000 Laminar, Re > 4000 Turbulent

Laminar

Turbulent

لترمن طبيعي معن بل ليكون مري Natural versus Forced Flow


A fluid flow is said to be notional on forced domain

A fluid flow is said to be <u>natural</u> or <u>forced</u>, depending on how the fluid motion is initiated.

In forced flow المراقف المراق

In natural flows

any fluid motion is due to natural means such as the buoyancy effect, which manifests itself as the rise of the warmer (and thus lighter) fluid and the fall of cooler (and thus denser) fluid

In this schlieren image of a girl in a swimming suit, the rise of lighter, warmer air adjacent to her body indicates that humans and warmblooded animals are surrounded by thermal plumes of rising warm air.

System and Control Volume

A system is defined as a quantity of matter or a region in space chosen for study.

A closed system:

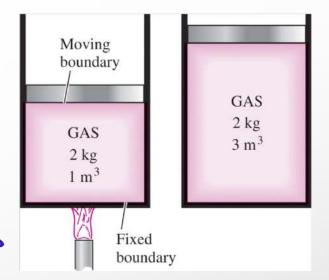
(known as a control mass) consists of a fixed amount of mass.

- An open system or control volume:
- is a properly selected region in space. It usually encloses a device that involves mass flow such as a compressor, turbine, or nozzle.
- In general, *any arbitrary region in space* can be selected as a <u>control</u> volume.

There are no concrete rules for the selection of control volumes, but the proper choice certainly makes the analysis much easier.

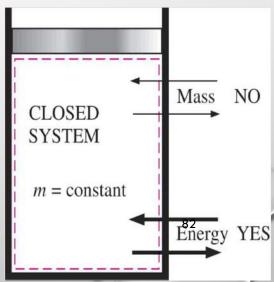
We'll discuss control volumes in more detail in the next Chapters.

System and Control Volume


Closed 2

منما ج <u>System</u>:

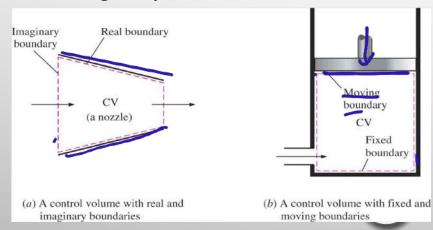
A quantity of matter or a region in space chosen for study.

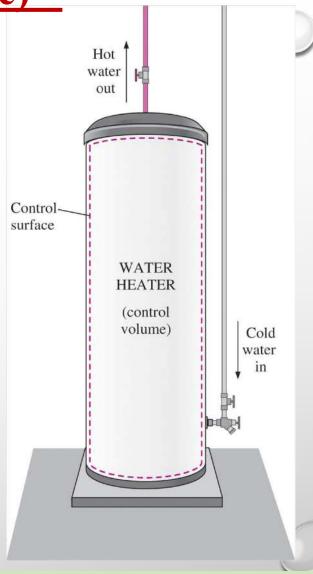

- Surroundings:
 The mass or region outside the system
 - The real or Boundary: المعربة المعر
 - The boundary of a system can be fixed or movible. Systems may be considered to be closed or open.

 SURROUNDINGS
 - Closed system (Control mass):
 A fixed amount of mass, and no
 mass can cross its boundary.

SYSTEM

BOUNDARY




Open system (Control volume)

A properly selected region in space.

- It usually encloses a device that involves mass flow such as a compressor, turbine, or nozzle.
- Both mass and energy can cross the boundary of a control volume.
- Control surface:

The boundaries of a control volume. It can be real or imaginary.

An open system (a control volume) with one inlet and one exit.