CHAPTER 1 Introduction

Content

محميات فينزيانيه النفام العالمي للوحدات **Physical Quantities** SI unit system **Assessment** コピット **Prefixes** صيف العلميد محويل الوحرار المسكهات **Scientific Notations Converting Units** Vectors

ا ي سني ؟ حكن حتما سبيح

Physical Quantity: Quantity that can be measured.

Physical quantities is divided into:

- a- Basic quantities
- b-Derived quantities

رمن السركة - هسانه مسافة خون

التحية الاسلية : . صي التي لحاسكة مغريعها

محمواست اساسه

a-Basic quantities: Cannot be defined in terms of other physical quantities .

Example: Length, Mass, and Time

1-Length: Distance between two points in space.

2-Mass: Amount of matter in an object.

3-Time: Duration between two events.

العلما ، الزمنى ، الكنك

يحيات مشيب

b- **Derived quantities**: derived by combining base quantities

Example: Velocity, Acceleration, Density

1- Velocity: (Displacement / time).

2- Acceleration: (Velocity / time).

3- Density: (mass/Volume)

الهات المستنة ، عرف من خلال كومج كهار

SI UNIT SYSTEM

SI (System International) units = metric system SI (دننام العالمير) عنام العالمين

Base units:

Table 1.1 Base unit in SI (see page 5)

الاساكستى	こ	Unit رحم	Symbol Symbol	Quantity	نه
		meter	m	length خدك	
		kilogram	kg	mass کتلہ	
	ينيه	second	S	time べか	
	ۍر	ampere	A	تیر محرابیٔ current	
	كلفن	kelvin	K	temperature; درجور	
	ل	mole	mol	amount of a substance	إحادة
		candela	cd	luminous intensity	لاخادة

النطام العالمي للوحرات

SI UNIT SYSTEM عيات المستقة

Derived Quantities:

Units for all other physical quantities can be derived form
the seven base units

Examples:

	Quantity	SI unit	
لعلى العض	ال Area = m xm	m^2	
سلاارت ع	Volume mxmxm جم= صول x عرا	m^3	2
÷الحير	Density ۲9 - m3	$kg/m^3 = rg$	/m3_ Kgm-3
ه انزمت	Velocity M - 5	m/s	
ر کے	Acceleration سريء ا	m/s ²	
افرصن		SZ	

^{*}For more derived units see Table 1.2 page 6

Assessment

Exercise 1:

• What is the SI unit of temperature? K (Kelvin)

Exercise 2:

• Which of following is Base (fundamental) unit and which is derived in SI unit system:

	candela	B	kelvin	\mathcal{B}
= القوه ١١ كسافة	joule Nim	D	hour	D
	kilogram	B	kilometer	0
	mole	В	gram	D
	second	В	volt	D

<u>Prefixes</u>

Table 1-2

Prefixes for SI Units

	Factor	Prefix ^a	Symbol	Factor	Prefix ^a	Symbol	
	10 ²⁴	yotta-	Y	10-1	deci-	d	_
	10^{21}	zetta-	Z		centi-	с	
	10^{18}	exa-	E	10^{-3}	milli-	m	-
	10^{15}	peta-	P	10-6	micro-	μ	10
	10^{12}	tera-	Т	$\frac{10^{-9}}{10^{-12}}$	nano-	n	10-
•	10 ⁹	giga-	G	10-12	pico-	р	
1000 000	10^{6}	mega-	M	10^{-15}	femto-	f	
1000	10^{3}	kilo-	k	10^{-18}	atto-	a	
	10^{2}	hecto-	h	10^{-21}	zepto-	Z	
	10^{1}	deka-	da	10^{-24}	yocto-	y	

^aThe most frequently used prefixes are shown in bold type.

• Table (page 7)

Scientific Notation

حتابه الرمتم ي سكل رمتم بين ١١ ـ ١٥ صغرب باس

الصفِدالعلمِ = 2531782 ه 2.5 × 106

Number = mantissa x10 exponent (power)

2.5110

Example:

$$4,600000 = 4.6 \times 10^{5}$$

$$0.0023 = 2.3 \times 10^{-3}$$

Assessment

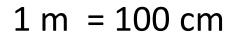
Exercise 3: Solve the following:

- 1. $5.0 \times 10^5 + 3.0 \times 10^6 = 3500000 = 3.5 \times 10^6$
- 2. $(5.0 \times 10^4) \times (3.0 \times 10^{-6}) = 0.15 = 1.5 \times 10^{-6}$
- 3. $(7.0 \times 10^6)/(2.0 \times 10^{-6}) = 3.5 \times 10^{12}$
- 4. The number of significant figures in 0.00150 equals ...3.
- 5. The number of significant figures in 15.0 is ...ふ

عَواعد الارقام المعنولة

() كل الاعداد عنير المصنية هي ارقام مصوب

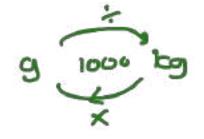
23.6 = 3 SF

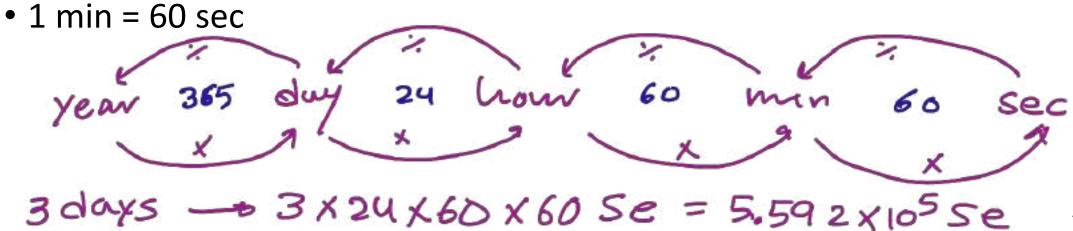

- (2) كل الاحفار دافل العدد وى يمين الفاعلة نقسَر ارقام المصنوبة 4 SF 1005 حد 1005 1005 ع 3 SF
 - و الاصار عمالي ر لا تعد ارضام معمذ بدي الاصار عمالي و معذب
- الاصنار ك البين لبون لانقر ارق م معنوب (م) معنوب عموب معنوب عموب معنوب معنوب
- وى الرحم اعترب مالصيف العلمي الانقدالارقام غي الاس

5.3 x10 = 25F

Converting (Changing) Units

Time Units


- 1 year = 365 days
- 1 day = 24 hours
- 1 hours = 60 min
- 1 hours = 3600 sec



Other Units

1 m = 1000 mm

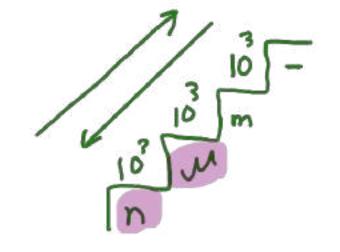
1 Kg = 1000 gm

Assessment

Exercise 4: Make the following transformations:

$$5 \text{ min} = s \quad 5 \times 60 = 300 S$$

2 hours =
$$s = 2 \times 60 \times 60 = 7200 \text{ S}$$


$$6.2 \, \text{km/h} = \, \text{m/s} \, 1.72 \, \text{m/s}$$

$$5.2 \text{kg} = \text{g}$$
 $5.2 \times 1000 = 52009 = 5.2 \times 10^{\circ}$

$$3\mu m = \underline{nm} \quad 3 \times 10^3 \, \text{nm} = 3000$$

$$50 \text{ m/hr} = \text{cm/hr}$$

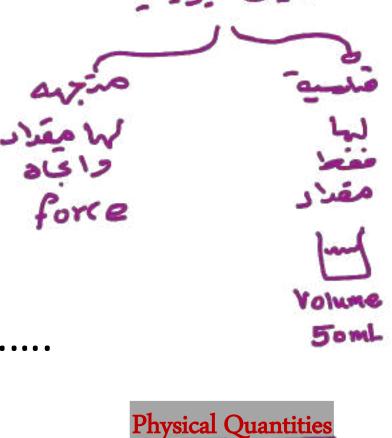
$$\frac{6.2 \text{ km}}{1 \text{ h}} = \frac{6.2 \times 1000}{1 \times 60 \times 60} \frac{\text{m}}{\text{s}} = 1.72 \text{ m/s}$$

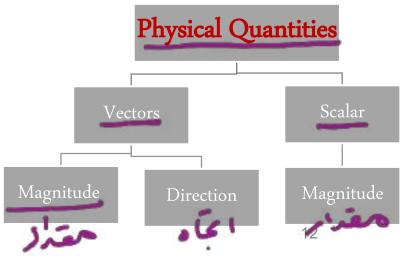
$$\frac{50m}{hr} = \frac{50\times100}{hr}$$

Vectors

Types of Physical Quantities:

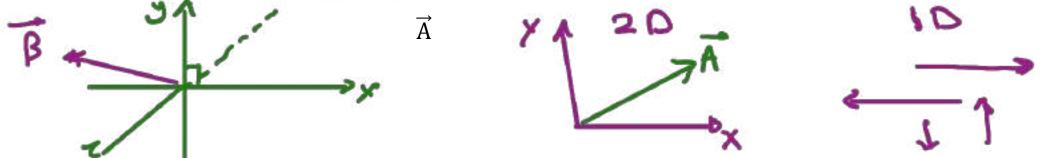
A- Vectors quantity


Ex: displacement, velocity, etc.....


B- Scalars-quantity

magnitude only

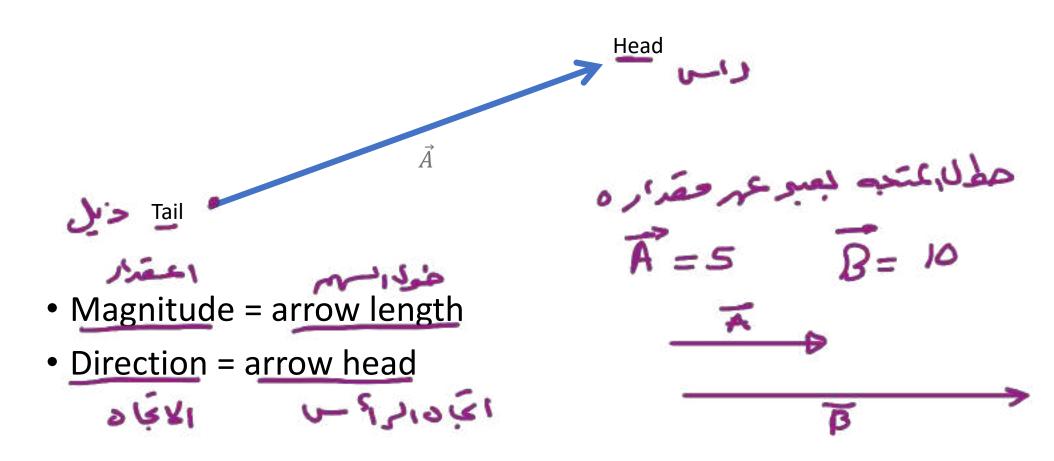
Ex: time, temperature, etc.....

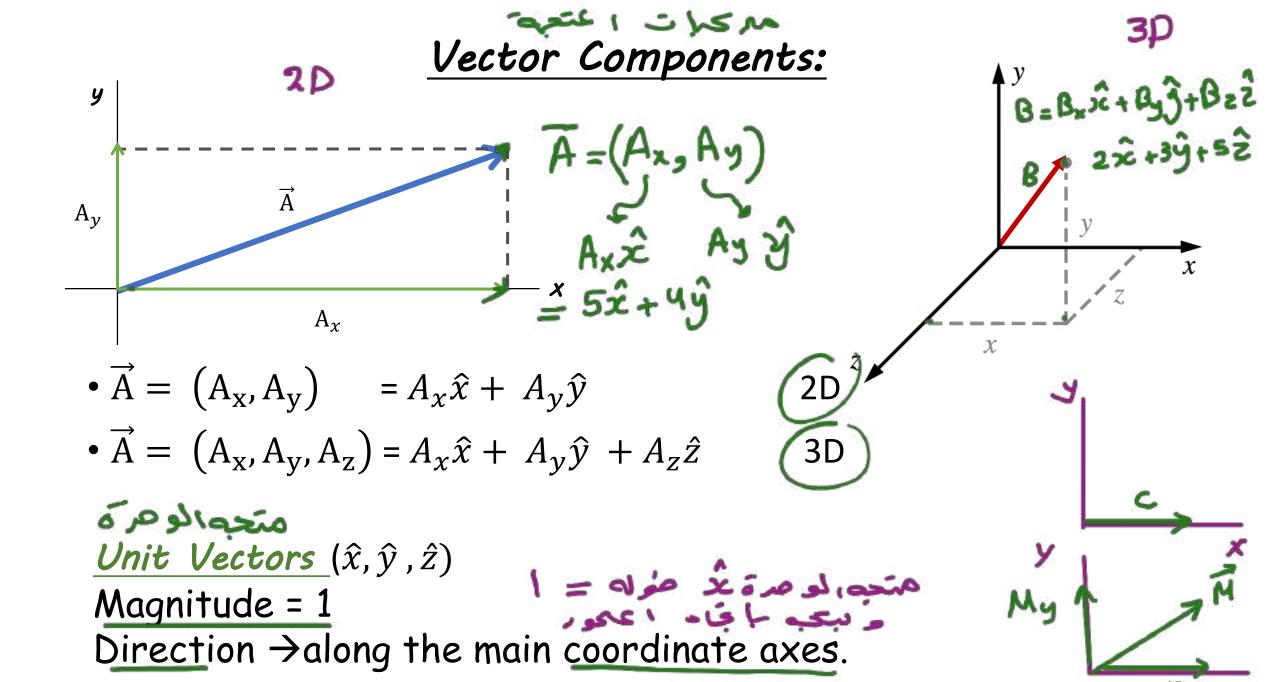


Vectors

Vector quantity symbol

A letter with small horizontal arrow pointing to the right above it




• Cartesian Coordinate System used to describe objects in 1D, 2D and 3D $_{(\mathrm{see\ page\ 18)}}$

Set of three axes with angle of **90°** between axis. (x, y and z)

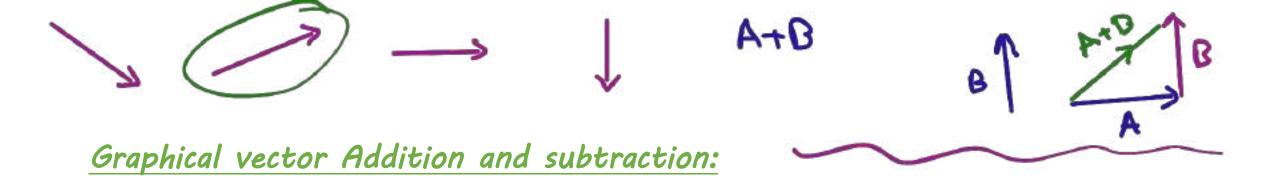
حيف مفير عهر اعتد ني الاحراسات

How to represent a vector in Cartesian coordinate system?

$$\Box \xrightarrow{3N} 5N \qquad \overrightarrow{A} + \overrightarrow{B} = 5 + 3 = 8N$$

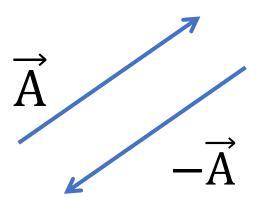
$$\overrightarrow{3N} \leftarrow \Box \xrightarrow{3N} 5N \qquad \overrightarrow{A} + \overrightarrow{B} = 5 + -3 = 2N$$

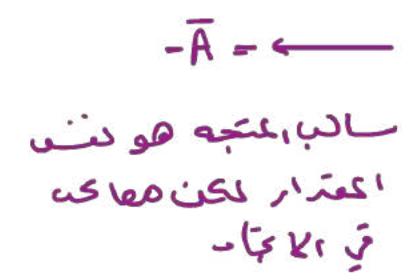
Graphical vector Addition and subtraction: (My) aurily i will


عم اعتمات وحرحها

Addition: the beginning of vector moves to the tip of vector

$$\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$$


$$\overrightarrow{C}$$


$$\overrightarrow{A}$$

• The inverse (reverse or negative):

Vector with the same length, in the opposite direction

Graphical vector Addition and subtraction:

Subtraction: adding the inverse of vector to vector

$$\overrightarrow{D} = \overrightarrow{A} - \overrightarrow{B}$$

$$\overrightarrow{C} = \overrightarrow{A} - \overrightarrow{B}$$

$$\overrightarrow{D} = \overrightarrow{A} - \overrightarrow{B}$$

$$\overrightarrow{-B}$$

$$\overrightarrow{A} - \overrightarrow{B}$$

في جه اعتجهات (ادالطی) بنجه اکرکبات

Vector Addition using component

$$\vec{A} = (A_{x}, A_{y}, A_{z}) \qquad A = (2, 1, 5)$$

$$\vec{B} = (B_{x}, B_{y}, B_{z}) \qquad B = (3, -2, 4)$$

$$\vec{A} + \vec{B} = (5, -1, 9)$$

$$\vec{A} + \vec{B} = (A_{x} + B_{x}, A_{y} + B_{y}, A_{z} + B_{z})$$

$$\vec{A} - \vec{B} = (A_{x} - B_{x}, A_{y} - B_{y}, A_{z} - B_{z})$$

$$\vec{A} + \vec{B} = (3, -2, 4)$$

• Exercise 4:

Find
$$\vec{A} - \vec{B}$$
 where $\vec{A} = (5,3,9)$ and $\vec{B} = (3,-1,2)$

$$A - B = (5-3,3,9) = (2,3,4,7)$$

$$A - B = (5-3,3,9) = (2,3,4,7)$$

عدمزه اعتجه برتم تاب موجه كاليفير ائاه سِقوموله عدمزه اعتجه برتم نابب المنفوموله وينعص الجعه عدم ماب عدد كاب

Multiplication of a vector with scalar:

Scalar * vector = vector

$$\vec{E} = s\vec{A} = s(A_x, A_y, A_z) = (sA_x, sA_y, sA_z)$$

scalar * vector

points in the same direction → positive scalar

points in the opposite direction→negative scalar

Exercise 5:

Given a vector $\vec{A} = (2,3)$, find $3\vec{A}$

$$3(2/3) = (6/9)$$

34

-3A

A= (1,2,3)

3A = 3(1, 2, 3)

3A = (3,699)

-3A=(-3,-6,-9)

معدر استجه • <u>Vector Maanitude</u>

•
$$\hat{x} = \hat{i}$$

•
$$\hat{y} = \hat{j}$$

•
$$\hat{z} = \hat{k}$$

$$\mathbf{A} = |\vec{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

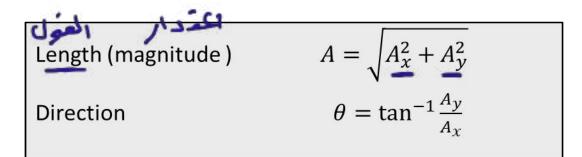
•
$$\vec{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z}$$

$$= A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

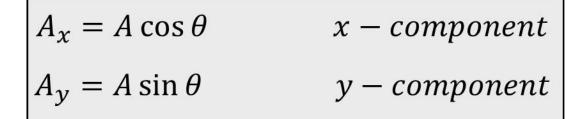
Exercise 6:

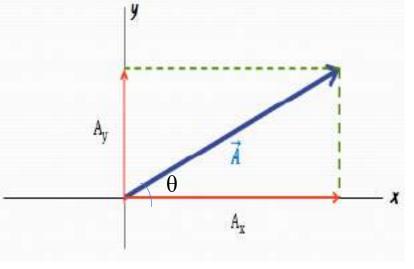
Represent the following vectors in <u>unit vector</u> notation and find the magnitude:

$$\vec{A} = (9,12,7) = 9i + 12i + 7k$$
 $\vec{B} = (45,-32) = 45i - 32i$
 $\vec{C} = (3,0,8) = 3i + 8k$


$$|A| = \int q^2 + 12^2 + 7^2 = 16.55$$

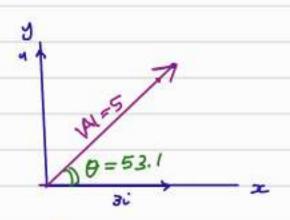
 $|B| = \int 45^2 + (32)^2 = 55.2$
 $|C| = \int 3^2 + 8^2 = 8.54$


التعير عم اعتبه باستعدام (متبار رامه) x me i y maj 2 --- K A = (3,2,1) A = 3i + 2j + K B=41+j-3K A+B= (3+4)(+ (2+1)j+ (1-3)K = 70+3j-216 Magnitude (asil, lies) million |A| = \ \[A_x^2 + A_y^2 + A_z^2 \]


A = 3i+2j+k calculate IAI

$$A = \int 3^2 + 2^2 + 1^2 = \int 14$$

طول کنجه Vector Length and Direction



2D Vectors

A= 31 + 4j

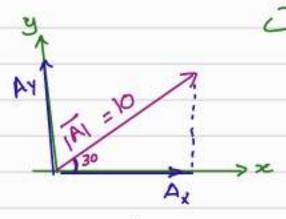
colculate the length (magnitude)

$$|A| = \int 3^2 + 4^2 = 5$$

Direction ($O = 200$)

 $|A| = \int 3^2 + 4^2 = 5$
 $|A| = \int 3^2 + 4^2 =$

$$\theta = tan^{-1}\left(\frac{Ay}{Ax}\right) = tan^{-1}\left(\frac{4}{3}\right) = 53.1$$


ولاحفات لحاب افزادين مبائر مانون الماسة المادم فيرابه لاول ١٠٠١ ٢=+ ١٠٠١ بجم 180 للاجاب ×=-الراريه أرادي الراي اذا کان 7=+ لنجه 180 للاحبابة 7=- X=-25131 الزاوب في كرج المالم Y=- X=+ " LIS 121 ناصدا لزاويد محاجي رور درس الحاركه 360 \$ 054,

& Example: Find magintude and diretion

$$\vec{B} = -2i + 5j$$

$$|\vec{B}| = \sqrt{(-2)^2 + 5^2} = 5.38$$

$$\theta = tan^{-1}\left(\frac{5}{-2}\right) = -68.2 + 180 = 111.8$$

Component

find the component

$$Ax = A \cos \theta$$

 $Ay = A \sin \theta$

Ax = 10 Cos 30 = 8.66

Ay= 10 Sin30 = 5

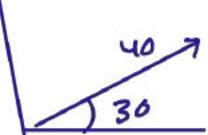
Example find the component of

Vectors |B|=5m withe the direction

450 with xaxis | 57 B

 $B_{x} = B \cos \theta = 5 \cos us = 3.53$ $B_{y} = B \sin \theta = 5 \sin us = 3.53$

Assessment


مرعبه x

Q1. What is the x-component of a vector having length 60 m at an angle of 60° with x-axis?

Q2.Find the y-component of a vector having length 40 m at an angle of 30° with x-axis?

$$Ay = A \sin 0$$

$$= 40 \sin 30 = 20 m$$

Q3. What is the magnitude of a vector $\vec{A} = 4\hat{x} - 3\hat{y}$?

$$|A| = \int 4^2 + (-3)^2 = 5$$

Q4. What is the direction of a vector $\vec{A} = 2\hat{x} + 6\hat{y}$?

b-2a

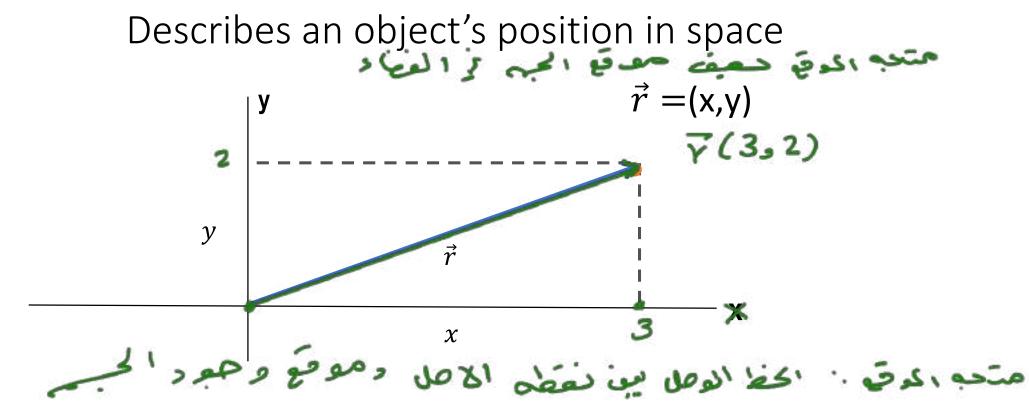
Q5. Two vectors are given by

$$\vec{a} = 2\hat{x} + \hat{y} + 3\hat{z} \quad \text{and} \quad \vec{b} = 8\hat{x} + 5\hat{y} + 6\hat{z}$$

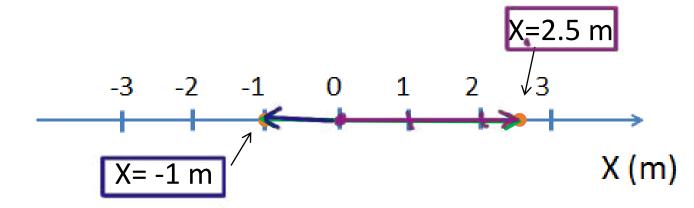
What is the magnitude of $\vec{b}-2\vec{a}$? $2\alpha = 2(2\hat{x}+\hat{y}+3\hat{z}) = 4\hat{x}+2\hat{y}+6\hat{z}$ $2\alpha = 2(2\hat{x}+\hat{y}+3\hat{z}) = 4\hat{x}+2\hat{y}+6\hat{z}$ $2\alpha = (8\hat{x}+5\hat{y}+6\hat{z}) - (4\hat{x}+2\hat{y}+6\hat{z})$ $= 4\hat{x}+3\hat{y}$

$$|b-2a| = \int 4^2 + 3^2 = 5$$

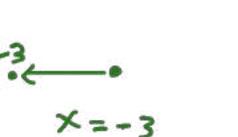
Useful software:


- http://phet.colorado.edu/sims/vector-addition/vector-addition en.html.
- https://fnoschese.wordpress.com/physics-applets-animations/.

Chapter 2 Motion in a straight line


POSITION VECTOR DISPLACEMENT VECTOR AND DISTANCE

Position vector:



The vector that links the location of the body with the origin of the coordinate

Position vector in one dimension

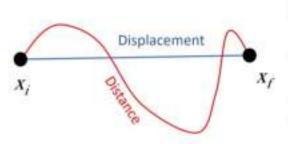
- In one dimension, position vector has only one component, x-component
- It can be positive or negative to the origin point

الازاحة

Displacement and Distance

• <u>Displacement</u> is the difference between the final position vector \vec{r}_2 , at the end of a motion, and the initial position vector \vec{r}_1

• Displacement in one dimension :

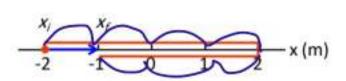

$$\Delta x = x_2 - x_1$$

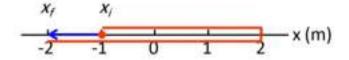
• Displacement can be (+ ve) or (- ve)

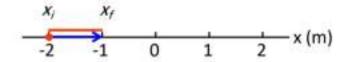
Position: vector 2 (Jean X Displacment: 1ecro! 201381 AX تدل عدى المتعير في موقع الحب ، الموقع الها في _ , كوقع الا بماذ $\triangle X = X_2 - X_1$ الاستاره اعوصب تدل عد ازاقة اكيم كؤالعين الاحداده الساسم تدل على ازامه مخ إسار م لا مه المار الذي ترل فنه الم $x_{1}=1$ $x_{2}=3$ $\Delta x_{1}=3-1=2m$ $X_1 = 1$ $X_2 = -1$ $\Delta X_8 = -1 - 1 = -2m$ Distance: soluti scalar

تمثل طول الرحلة الكامله دون الاعتماد عد بعظم البرايم والنهاية ربدن اب مرزان مرز

Displacment: = 2.5068 20




Displacement	Distance
Net change between initial position x_i to a final position x_f	Total trip from initial position x_i to a final position x_i
Does not depend on the path of motion	Depends on the path of motion
Vector	Scalar
SI unit: m	SI unit: m


اكمانه والازامة	3km	
Displacment	Distance	7 1.
ن المن من على المنتائير إلى في المنتائير الما في المنتاب المن	حي صول الرحلة عاملة	Jino 3km
لامتعد على مسار الوحلة	تتقيير لبقير اعسار	Distance = 6 km
کید متحبه (۷) مقدار وا کاه) عین اذ تکون + اد -	حيد مناسه لهاعقدار مقط (موجهدانا)	Displacment= Zero
و جدة العراس ٢٨	م مده العياس m	

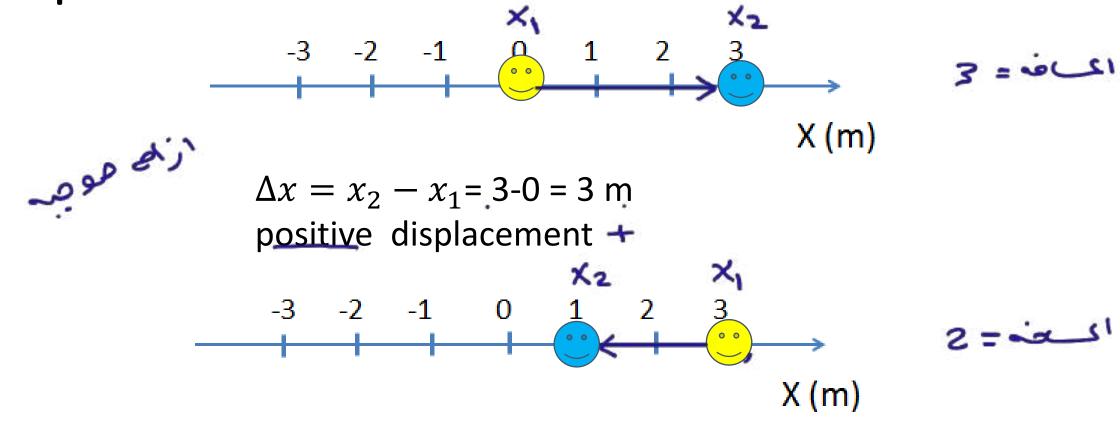
Position and Displacement

Here you can see the difference between displacement and distance on the x-axis:

 $\Delta x = 1 \text{ m}.$

اطاب

Total distance = 7 m.


 $\Delta x = -1 \text{ m}.$

Total distance = 7 m.

 $\Delta x = 1 \text{ m}.$

Total distance = 1 m.

Displacement and Distance

 $\Delta x = x_2 - x_1 = 1-3 = -2$ m negative displacement

Displacement and Distance

مسانۍ-

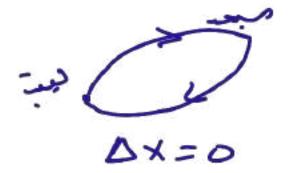
القيمه الطلعة عستجه الازاحة

Distance: the distance I that moving object travels is the <u>absolute value</u> (the magnitude) of the displacement vector.

In one dimension

Distance ≥ 0

 $l = |\Delta x|$

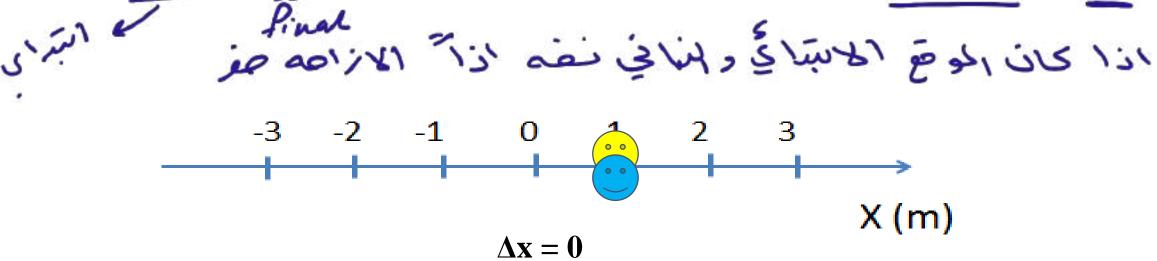

(if the object does not reverse its direction)

SI unit of distance = m (meter)

الحب فه تكون صوصه عيمه تعلمات

اذا كان الحب يبترله باغاه والعرفان كمنه نف بازام لكن بيون الب

Displacement and Distance



Remember

- Displacement is vector
- Distance is scalar

If the initial and find positions are the same . the total displacement is 0

سرعم (منحم) Velocity Vector, Average Velocity and Speed

What is velocity? Velocity: the change in position in a given time interval.

- Velocity is vector.
- Velocity can be +ve or -ve

+What is the velocity of stationary object?

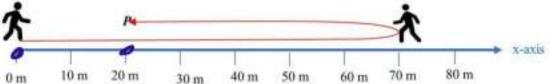
$$\nu = 0$$

$$\overline{V} = V_{avg} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$
 m/s

عدم متبه (موجه اوسالبه) الازافة = V عدمته

3 speed

السريمه العكامية


موجب موجب موجب

السرعه عند كلفه معشم (عسم متعبهة (١٧٠) ١٧٠)

 $V_{avg} = \Delta x = \frac{4-10}{2} = \frac{-6}{2} = -3m/s$

Velocity	Speed &	
$= \frac{\text{displacement}}{\text{time}} \frac{\Delta \times}{\Delta L}$	= distance time Depends on the path of	
Does not depend on the path of motion	Depends on the path of motion	
Vector	Scalar	
SI unit: m/s	SI unit: m/s	

Example: a man walked as shown in the figure, then stopped at the point P. The total time that he takes during his walk was 250 s. calculate the distance, displacement, average speed, and average velocity.

Solution:

Distance = 70 + 50 = 120 m

Displacement = +20 m

Average speed = $\frac{\text{distance}}{\text{time}} = \frac{120}{250} = 0.48 \text{ m/s}$

Average velocity = $\frac{\text{displacement}}{\text{time}} = \frac{+20}{250} = + 0.08 \text{ m/s}$

Distance = 120m

X=2++3+2

Displace ment = X2-x, = 20-0=20 m

Speed = Distance = 120 = 0.48 m/s time 250

Example 2.

The displacement x of an object is given as a function of time, $x = 2t + 3t^2$. The instantaneous velocity of the object at t = 2s is نشتق اعمادله لتملقوها

$$\vec{v} = dx = 2 + 6t$$
 \vec{v}

$$\vec{v} = 2 + 6(2)$$

The + sign means that the displacement and the

velocity are in the positive direction of x-axis

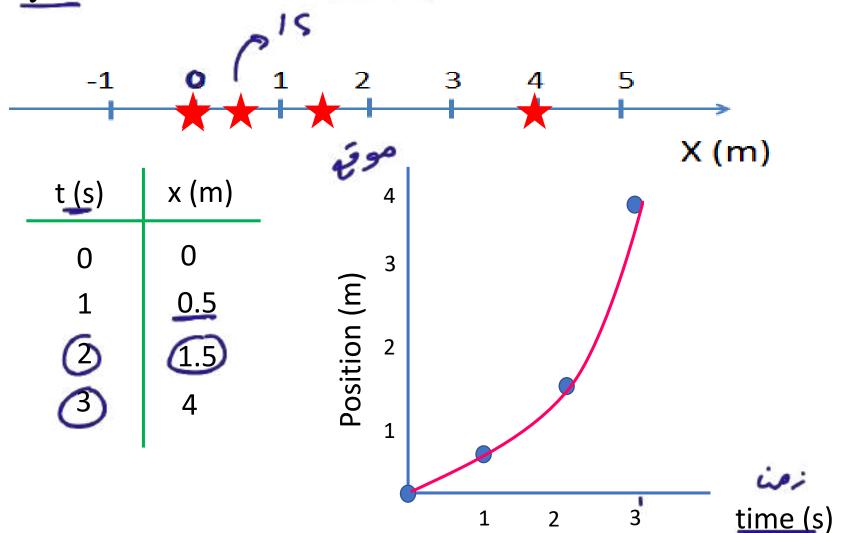
Average and instantaneous velocity

velocity.

$$v = |\vec{v}|$$

- Speed is scalar.
- •Speed is always positive.

Speed can be found by dividing distance by time interval

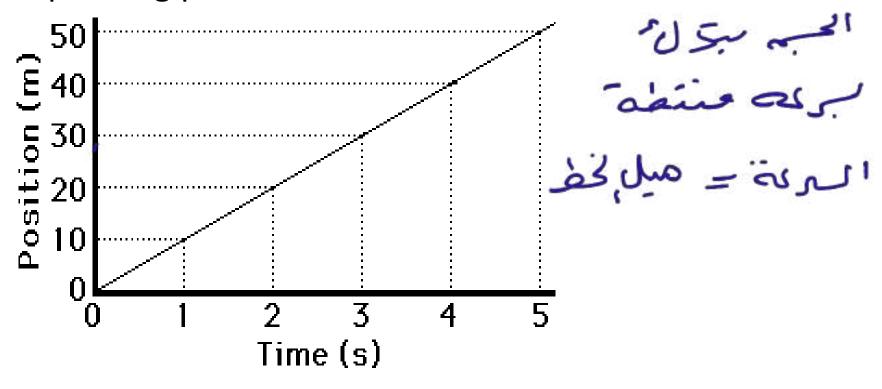

$$v = \frac{l}{\Delta t} = \frac{\Delta t}{\Delta t}$$

Position Graph

المعقى صحد لا واذمن كى قور لا

37

•Position graph or position-time graph is a graph between the position of an object on the y-axis, and time on the x-axis.



Position-time graph

السريم سيادي ميل ضط اكوقع- الزمن

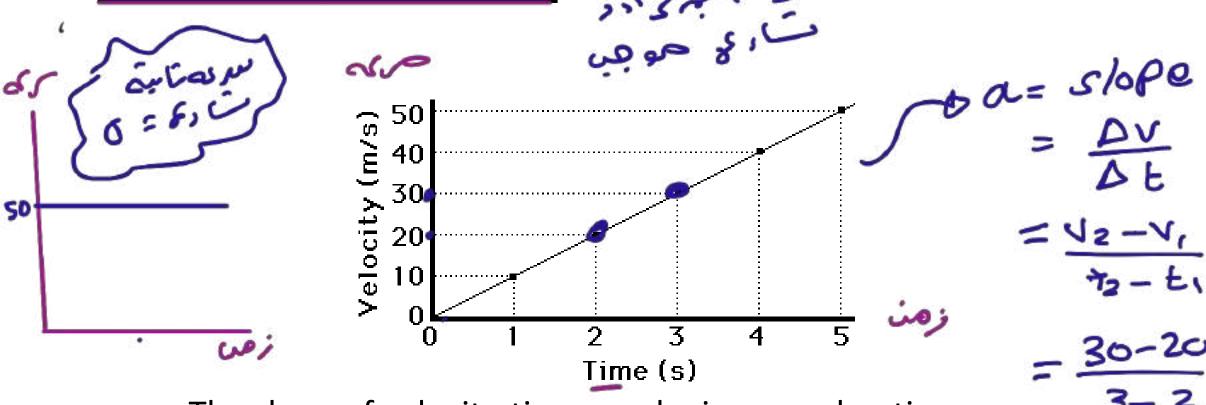
اعيل

• The slope of the position-time graph at any point gives the velocity of the object at the corresponding position

Position-Time Graph

Acceleration Vector

Average acceleration: the velocity change per time interval


$$a = \frac{\Delta v}{\Delta t} = \frac{v_{2-}v_{1}}{t_{2}-t_{1}}$$
 average acceleration
$$a = \frac{dv}{dt} \quad , \quad a = \frac{d^{2}x}{dt^{2}} = \frac{d}{dt}\left(\frac{dx}{dt}\right)$$
 instantaneous acceleration

- Acceleration can be <u>+ve</u> or <u>-ve</u>
- Acceleration unit is m/s^2

عکن التراج ان مکور صوعب ارساب اکوعده 2 ک/۱۷

★What is the acceleration of an objects that moves with constant velocity?

The slope of velocity-time graph gives acceleration

Acceleration سرعه، لمب تخادد ۱ کاک ۱ کی اسری والت کی بنعتی الایک ادا آ المحه نودار • If the velocity and acceleration are in the same direction

- - ⇒ the object moves faster

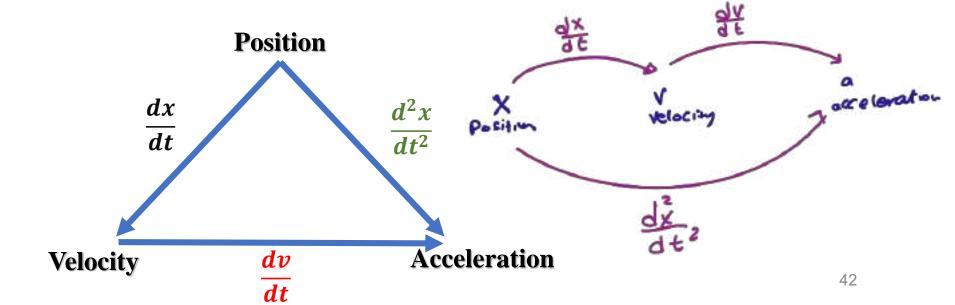
If the velocity and acceleration are in opposite direction

⇒ the object slows down

Remember

سرعه الميم الساكن = حوا مارونيز اكو ميه

بائن سائن


The velocity of <u>stationary</u> object (object <u>at rest</u>) is <u>zero</u>

No Change in position

۱۵۱ تخرله، لمبه لبی عابته اد: استری = Zero

• The acceleration of an object that moves with constant velocity is zero

No Change in velocity

Assessment

Q1. The position vector of an object is given by: $x(t)=3t^2-t+2$ m find its position at t=2 s $\chi(t) = 3t^2 - t + 2$ $\chi(2) = 3(2)^{2} - (2) + 2 = 12 - 2 + 2 = 12m$

Q2. The position vector of an object is given by: $x(t)=3t^2-t+2$ m find its **displacement** in time interval from $t_1=2$ s to $t_2=3$ s $x_1=3(2)^2-2+2=12$ $x_2=3(3)^2-3+2=26$ 1X= X2 - X1 = 26 - 12=+14m

Q3. A particle moves along the x-axis according to the equation $x(t)=t^2+5t+4$ m, find the velocity of the particle at t=1 s is increased as $\sqrt{1}=2+5$ which is $\sqrt{1}=2(1)+5=7$ in $\sqrt{1}=2(1)+5=7$ in

Q4. The position of a particle is given by

 $x(t) = t^2 + 4t - 2$ m, what is the average velocity during time interval from $t_1 = 1$ s to $t_1 = 2$ s

$$t_1 = 4s$$
 $X_1 = (1)^2 + 4(1) - 2 = 1 + 4 - 2 = 3m$ $V = \frac{x_2 - x_1}{2} = \frac{10 - 3}{2 - 1} = 7m/s$
 $t_2 = 2s$ $X_2 = (2)^2 + 4(2) - 2 = 4 + 8 - 2 = 10m$ $t_2 - t_1 = \frac{10 - 3}{2 - 1} = 7m/s$

Assessment

Q5. The velocity of a particle is given by v=2t3+4t2-2 m/s find its

eration at t=3 s
$$\vec{c} = \frac{dV}{dt} = 6t^2 + 8t \iff t=3$$

$$\vec{c} = \frac{dV}{dt} = 6t^2 + 8t \iff t=3$$

$$\vec{\alpha} = 6(3)^2 + 8(3) = 78 \, \text{m/s}^2$$

Q6. The position of a particle is given by x=t2+2t-2 m find its acceleration at

$$X=t^2+2t-2$$

$$V = \frac{dx}{dt} = 2t + 2$$

$$\alpha = \frac{dV}{dt} = \frac{dx}{dt^2} = 2 m/s^2$$

Motion with Constant Acceleration

sport to move hose of form rest vose of the sport of the second of the s

Change rate of acceleration with time is zero

 \underline{x} : final position

 x_o : initial position

v: final velocity

 v_o : initial velocity

a: acceleration

t: time

عه: معدار تابت و سیل کی ان ای باره نی سرکه هی زیاری منتظمه تابت هم

$$V = v_0 + at$$

 $x - x_0 = v_0 t + \frac{1}{2} at^2$
 $v^2 = v_0^2 + 2a(x - x_0)$

Equations of Motion are:

	Equation	х	υ	а	t
1	$x = x_o + v_o t + \frac{1}{2} a t^2$	✓	×	✓	✓
2	$x = x_o + \overline{v}t$	✓	✓	×	✓
3	$v = v_o + at$	×	✓	✓	✓
4	$v^2 = v_o^2 + 2a(x - x_o)$	✓	✓	√	×

Remember:

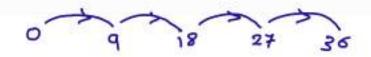
- <u>a = constant</u>
- If the object is initially at rest $v_o = 0$

• When a moving object stops v = 0

$$\overline{v} = \frac{v + v_o}{2}$$

الريم عنوسطه = محمد ع السرعين - 2

Exercises


Q6. A particle starts from rest with constant acceleration of 9 m/s², what is its velocity after 4 sec

Q7. An object starts its motion from rest with constant acceleration of 10 m/s², find the displacement of the particle after 1 sec

Q8. A car starts from rest to 40 m/s in 8 s, What is the acceleration of that car?

Q9. A particle starts its motion with initial velocity 10 m/s and constant acceleration 6 m/s². How far does it move in 2 s?

Exercises

Q6. A particle starts from rest with constant acceleration of 9 m/s2, what is its velocity after 4 sec

$$a=am/s^2$$
 $V=??$

Q7. An object starts its motion from rest with constant acceleration of 10 m/s2, find the displacement of the particle after 1 sec

$$\Delta X = X - X_0 = 22$$

$$\Delta X = 0(1) + \frac{1}{2}(10)(1)^2 = 5 \text{ m}$$

Q8. A car starts from rest to 40 m/s in 8 s, What is the acceleration of that car?

$$\frac{v-v_0}{t} = \underbrace{at}_{t} \qquad a = \underbrace{v-v_0}_{t}$$

Q9. A particle starts its motion with initial velocity 10 m/s and constant acceleration 6 m/s². How far does it move in 2 s? مساخة

$$\Delta X = 10(2) + \frac{1}{2}(6)(2)^2 = 20 + 12 = 32 \text{ m}$$

Free Fall

السعوط الحر

Vo=100M/sC

استرع المنابح عمر حقوه الجاديده ساست

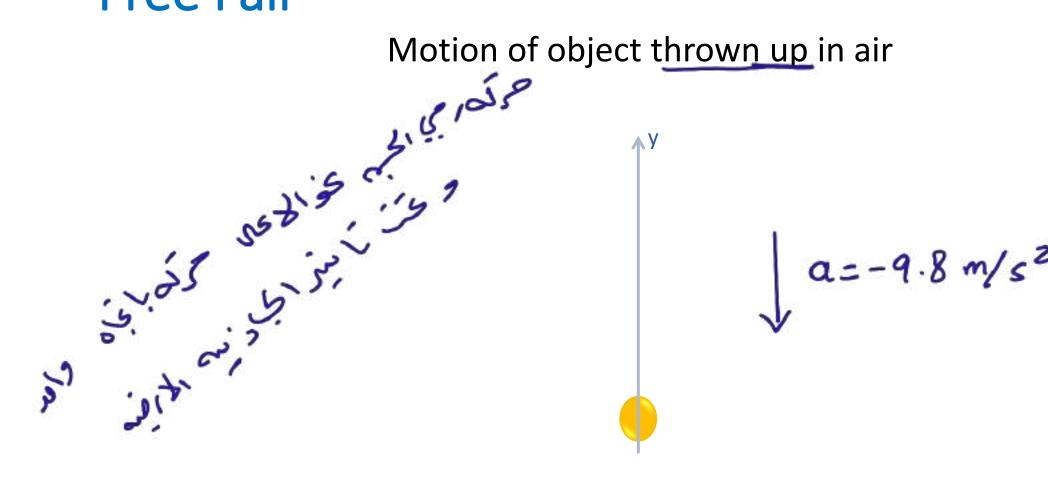
 The acceleration due to the gravitational force is constant

$$g = 9.8 \text{ m/s}^2 \checkmark$$

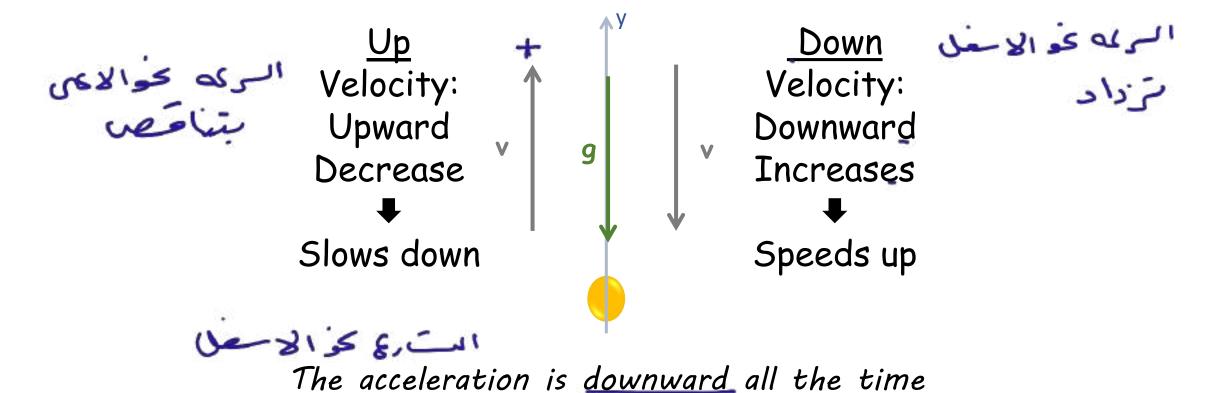
هركه الحبه خدً كاسِر الجادبي ستم المعقوط كم

 Motion under the influence of a gravitational acceleration is called *Free Fall* -g=a

V0=0


9.8

• Free fall is one dimension motion


السعوط ، على تانيه تيزد در الرعه بهقدار تابت (٩٠٥) لا المرمه المعلى عبد الرعد عبد الرعد) لا المرمد المبيد ميمة الرعد (٩٠٥) لا المرمد المبيد ميمة الرعد (٩٠٥) لا المرمد المبيد ميمة الرعد المبيد المرمد المبيد المب

Free Fall

Motion of object thrown up in air

Free Fall At maximum height Velocity = 0

Think About That

- مي العمة السيدة = صر الت، ع تابت ما 4.3
- At the top, the velocity is zero although still there is acceleration
 - · A particle moves with a constant velocity
 - → the acceleration is zero

Free Fall

$$x \rightarrow y$$
 vertical axis $a = -g$ positive direction is up

		y	v	t
1	$y = y_o + v_o t - \frac{1}{2} g t^2$	✓	×	✓
2	$y = y_o + \overline{v}t$	✓	✓	✓
3	$v = v_o - gt$	×	✓	✓
4	$v^2 = v_o^2 - 2g(y - y_o)$	✓	✓	×

في علاه حرته، عيم حو عباد المادسه الارضيه سنحدم سفسا قواسن الوته بست ريح تابي v= vo-gt y-70 = 206- 39t 12 = 10 - 29 (y-y0)

الادتفاج الدسّداني : هال الارتفاع الها لي: ه

Assessment

Q10. A ball falls freely from a top of a building 20 m high find its velocity when it reaches the ground.

Q11. stone thrown vertically down from a top of a building 20 m, find the time taken by the stone to reach the ground?

Q12. A ball thrown straight upward from a top of a building with an initial velocity of 12 m/s. What is the time at which the ball reaches its maximum height?

Assessment

Q10. A ball falls freely from a top of a building 20 m high find its velocity when it reaches the ground.

$$V^{2} = V_{0}^{2} - 29(y-y_{0})$$

 $V^{2} = 0^{2} - 2(q.8)(0-20)$
 $V^{2} = +2(q.8)(20) = 392$
 $V^{2} = \sqrt{392} \Rightarrow V = 19.8 \text{ m/s}$

Q11. stone thrown vertically down from a top of a building 20 m, find the time taken by the stone to reach the ground?

$$y_{0}=20$$
 $y=0$ $y_{0}=0$ $y=19.8$

$$V=V_{0}-gt$$
 $t=\frac{V-V_{0}}{-9}=-\frac{19.8-0}{-9.8}=2.5$

Q12. A ball thrown straight upward from a top of a building with an initial velocity of 12 m/s. What is the time at which the ball reaches its maximum height?

$$V_{0} = 12$$
 $V_{0} = 0$ $t = ?_{i}$

$$V = V_0 - gt$$
 $t = \frac{V_0 - v_0}{-g}$
 $t = \frac{o - 12}{-9.8} = \frac{1.22}{5}$

مُؤَحَالَ خَلِي السَّعَالَ: الرُّمَنَ اللازم لوجول, لجمع اى احتى ارتفاع

Free Fall

الزمن اللام للوصل اى دعم ارتف ع

Time to reach maximum height (top):

$$t = \frac{v_0}{g}$$

$$V = Vo - gt \qquad t = \frac{v_o}{g}$$

$$V = Vo - gt \qquad t = \frac{V - Vo}{-g} = \frac{-Vo}{-g} = \frac{Vo}{g}$$

Prove!!

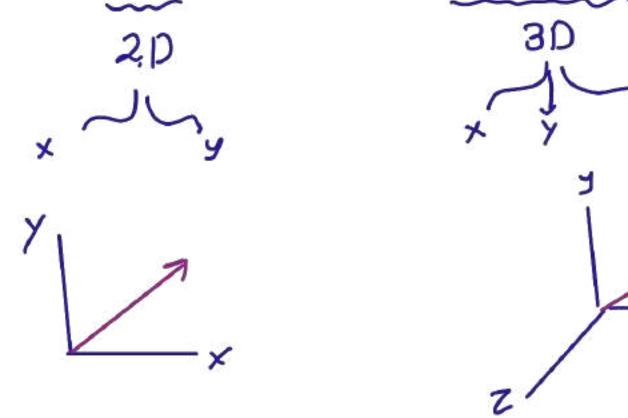
Assessment

Problem 1:

The <u>initial position</u> of a particle at time t=2s is 4m. What is the <u>average velocity</u> if the particle at time t=12s is located at a final position $\frac{6m}{x=6}$?

Problem 2:

The position of a particle at any time is described as the following $x(t) = 4t^2$ m/s. What is the velocity of the particle at time t=1s?


1)
$$\sqrt{\frac{-x-x_0}{t-t_0}}$$

= $\frac{6-4}{12-2}$
= 0.2 m/s

$$V = 3(1) = 8t$$

 $V = 3(1) = 8m/s$

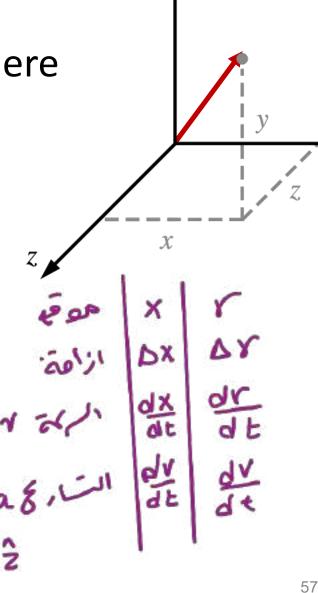
Chapter 3

Motion to two and three Dimensions

3D coordinate system

In three dimensional coordinate system there are three orthogonal axes: x, y and z that make 90° to each other.

Position vector, velocity vector and acceleration vector each has three components


$$\vec{A} = (A_x, A_y, A_z) = A_x \hat{x} + A_y \hat{y} + A_z \hat{z}$$

$$\vec{A} = 3 \hat{x}$$

$$\vec{A} = 3 \hat{x} + 4 \hat{y}$$

$$\vec{A} = 3 \hat{x} + 4 \hat{y}$$

$$\vec{A} = 3 \hat{x} + 4 \hat{y}$$

Velocity and acceleration in plane:

الرَّمة في لفدين ١١ و العبد تنقير السرمة معدّاراً والمِناه

• In 2D & 3D: velocity can change <u>magnitude</u> and <u>direction</u>.

الت رج لي يتعنير الاياه دون تعنير الربح لي منظ عن تغير الاياه

• There can be acceleration even when the magnitudes of the velocity does not change.

•An object that travels along <u>curved</u> path must have acceleration . ای صبہ ستریہ فر صدر صنحتی ۱۱۶۱

<u>Position vector:</u>

$$\overline{\vec{r}} = (r_x, r_y, r_z) = r_x \hat{x} + r_y \hat{y} + r_z \hat{z}$$

Velocity vector:

$$\overline{\vec{v}} = (v_x, v_y, v_z) = v_x \hat{x} + v_y \hat{y} + v_z \hat{z}$$

$$v_x = \frac{dx}{dt}$$
, $v_y = \frac{dy}{dt}$, $v_z = \frac{dz}{dt}$

Acceleration vector:

$$\vec{a} = (a_x, a_y, a_z) = a_x \hat{x} + a_y \hat{y} + a_z \hat{z}$$

$$a_x = \frac{dv_x}{dt}$$
 , $a_y = \frac{dv_y}{dt}$

$$\vec{r} = t^3 \hat{x} + 3t^3 \hat{y} + 5t^2$$
 $t = 1$
 $t = 4$
 $t = 4$

$$\frac{dz}{dt} = 3t^2 \hat{x} + 6t \hat{y} + 5t^2$$

Assessment

O1.

Velocity of a particle moving in space is given by:

$$\vec{v} = 4t\hat{x} + t^3\hat{y} - 8\hat{z}$$

What is the magnitude of the acceleration of the particle at t=1s?

$$\vec{a} = \frac{dv}{dt} = 4\hat{x} + 3t^2\hat{y}$$

$$\vec{a} = 4\hat{x} + 3\hat{y}$$

$$\vec{a} = 4\hat{x} + 3\hat{y}$$
 $|\vec{a}| = \int 4^2 + 3^2 = 5m/s^2$

Q2:

The position vector of a particle is given by

$$r(t) = [(2t-3)\hat{x} - 3t^2\hat{y} + 4t\hat{z}]m$$

Find the magnitude of acceleration at any time?

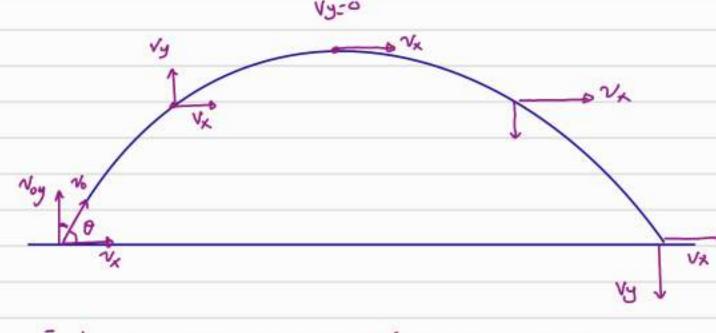
$$\hat{r}(\xi) = (2\xi - 3)\hat{x} - (3\xi^2)\hat{y} + (4\xi)\hat{z}$$

$$\hat{V} = \frac{d\hat{Y}}{d\xi} = 2\hat{x} - 6\xi\hat{y} + 4\hat{z}$$

$$\bar{\alpha} = \underline{d}\bar{v} = 0\hat{x} - 6\hat{y} + 6\hat{z}$$

$$= -6 \text{ m/s}^2$$

حركه المقررمات المتاسية Ideal projectile motion:


حرته المجم اعقد من حي حرته مي دجد سي

• Projectile motion can be described as a motion in two dimensions.

منات

• Ideal project motion is any object that is released with some initial velocity and then moves only under the influence of gravitational acceleration. منافذ بنائير الحادية الأرضية

• Ideal projectile motion neglect air resistance and wind speed, spin of the projectile and other effects influencing the flight of real life projectiles

* القوه الوجديد المواترة في الميم عن مؤه الحاد بي لم و = 0

* بالاعبَّد بالاعفي لايوهد فوه موامَّه الترك ٥٥ مه الله فعيه تاب لا تابه الله فعيه تاب لا تابه

 $a_x = 0$ $V_x = V_0 \cos \theta$

* السرك الهودية تتغير باستمرار (هب علامان لعوط ع)

Voy = Vosino

السيء العويه عند لحطم لانفلاف

(2 = 16 sino - 9 t)

الريم العودي عند اع لحفة

Ny = zero

الركه العودي عشاعتم ارتفاع

 $\tilde{r} = \times \hat{x} + y\hat{y}$ [r]

ا ا عوقع عنداي كفة (۲) = آ×2+y2

V= 1/x 2 + 1/4 9


1√1 = √4×44°

a = 02 - 99

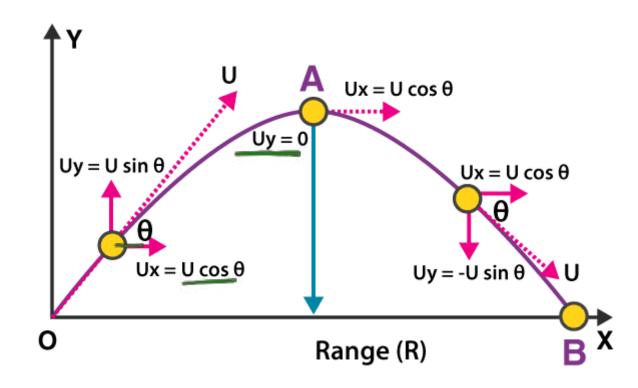
به الت عنداي كفة

Projectile motion has two components:

- x-component in the horizontal direction
- y-component in the vertical direction

• position vector:

$$\vec{r} = (x, y) = x \hat{x} + y \hat{y}$$


• velocity vector:

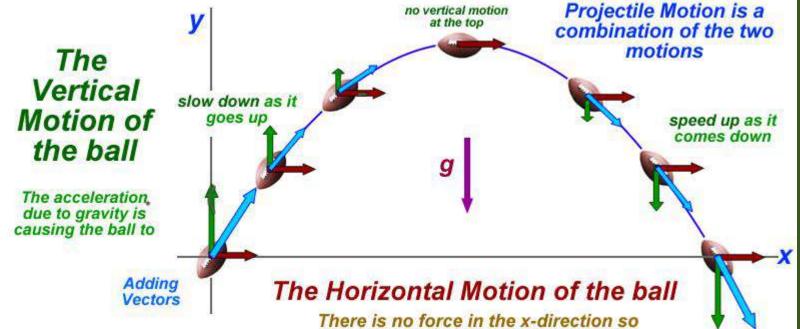
Perfocitly vector.

$$\frac{\vec{v}}{v} = (v_x, v_y) = \frac{dx}{dt} \hat{x} + \frac{dy}{dt} \hat{y}$$

acceleration vector:

$$\vec{a} = (0, -g) = -g\hat{y}$$

Projectile motion has two independent component:


Acceleration: 8 - 👊

In x-direction \rightarrow motion with constant velocity

In y-direction \rightarrow free fall

$$a_x = 0 m/s^2$$

 $a_y = -g = 9.8 m/s^2$

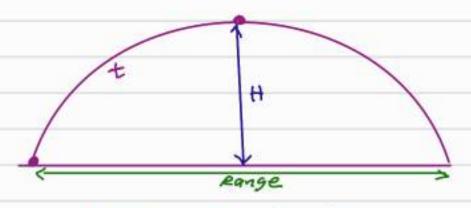
Projectile Motion - A Vector Perspective

there is no acceleration

لادومه ترکج با کاه X

Velocity:

السرعه الاعبرانيه


Initial Velocity components:

$$\frac{v_{ox} = v_o \cos \theta_0}{v_{oy} = v_o \sin \theta_0}$$

$$v_o = \sqrt{v_{0x}^2 + v_{0y}^2}$$

Final Velocity components:

$$v = \sqrt{v_x^2 + v_y^2}$$

Maximum Height

$$H = \left(\frac{V_0 \sin \theta}{2g}\right)^2$$

Range

$$R_{MAX} = \frac{V_0^2}{g}$$

Flight time Time to Max Height

زحنا التعلقي كافل

Assessment

Q2. An arrow is released with an initial velocity of 100 m/s with an angle 60° above the horizon, what is its horizontal velocity?

Q3. An object is thrown with initial velocity of 40 m/s at initial angle of 30°, what is the initial vertical velocity?

Q4. A ball shot has initial velocity 50 m/s and initial angle 60° find ball's position at $t=2 \, s$

Assessment

Q2. An arrow is released with an initial velocity of 100 m/s with an angle 60° above the horizon, what is its horizontal velocity?

Q3. An object is thrown with initial velocity of 40 m/s at initial angle of 30°, what is the initial vertical velocity?

Q4. A ball shot has initial velocity 50 m/s and initial angle 60° find ball's position at t = 2 s

$$V_X = \frac{X}{E}$$

$$(50,67)$$

$$V_y = V_0 S_0$$

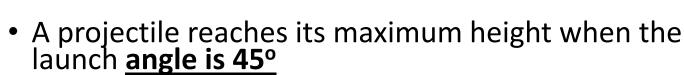
$$V_y^2 = (V_0 S_0)$$

$$y = V_{0}Sin\theta - gt$$
 $y - y_{0} = V_{0}Sin\theta t - \frac{1}{2}gt^{2}$
 $1/y^{2} = (V_{0}Sin\theta)^{2} - 2g(y-y_{0})$
 $x = y_{0} = y_{0}$
 $x = v_{0} + v_{0}$
 $x = v_{0} + v_{0}$
 $y = v_{0} = v_{0}$

Maximum Height, time and range of a projectile

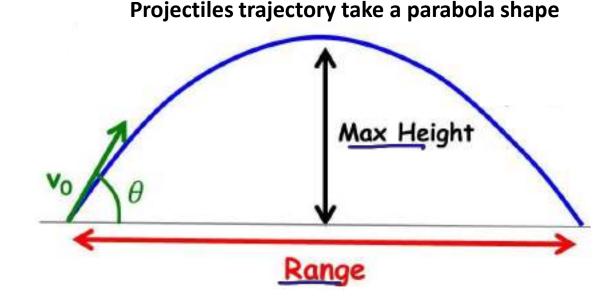
Maximum Height :

$$H = \frac{v_0^2 \sin^2 \theta}{2g} \checkmark$$


• Range: اكدى

$$R = \frac{v_o^2 \sin 2\theta}{g}$$

احمارتعام


• Time to Maximum Height:


$$t = \frac{v_o sin\theta}{a}$$

$$R_{\text{max}} = \frac{v_o^2}{g}$$

at
$$\theta = 45^{\circ}$$

<u>Assessment</u>

Q6. An object is thrown with initial velocity 20 m/s and an angel of 30° above the horizon, what is the maximum height for the object?

Q7. A ball is thrown with an initial velocity 30 m/s with an angel of 15° above the horizon what is it's horizontal range?

- Q8. A projectile is thrown with an initial speed 10m/s at an angle 30° above the x-axis.
 - 1. What is the magnitude of it's velocity at t=1s?
 - 2. What is the <u>maximum height</u>, the <u>time</u> needed to reach max. height, and the <u>range</u> of motion?

Assessment

Q6. An object is thrown with initial velocity 20 m/s and an angel of 30° above the horizon, what is the maximum height for the object?

$$H = (\frac{VoSin0})^2 = (\frac{20Sin30})^2 = 5.1 \text{ m}$$

$$29 \qquad 2(4.8)$$

Q7. A ball is thrown with an initial velocity 30 m/s with an angel of 15° above the horizon what is it's horizontal range?

$$R = \frac{30^2 \text{ Sin 20}}{9.8} = \frac{30^2 \text{ Sin (2x15)}}{9.8} = \frac{45.9m}{9.8}$$

Q8. A projectile is thrown with an initial speed 10m/s at an angle 30° above the x-axis.

- What is the magnitude of it's velocity at t=1s?
- 2. What is the <u>maximum height</u>, the <u>time needed to reach max</u>. height, and the <u>range of motion?</u>

1)
$$V_{40} = V_0 \cos \theta = 10 \cos 30 = 8.66$$
 $V_{40} = V_0 \cos \theta = 10 \cos 30 = 8.66$
 $V_{40} = V_0 \sin \theta = 10 \sin 30 = 5$
 $V_{40} = V_{40} = V_0 \cos \theta = 10 \cos 30 = 8.66$
 $V_{40} = V_0 \cos \theta = 10 \cos 30 = 8.66$
 $V_{40} = V_0 \cos \theta = 10 \cos 30 = 8.66$
 $V_{40} = V_0 \cos \theta = 10 \cos 30 = 8.66$
 $V_{40} = V_0 \cos \theta = 10 \cos 30 = 8.66$
 $V_{40} = V_0 \cos \theta = 10 \cos 30 = 8.66$
 $V_{40} = V_0 \cos \theta = 10 \cos 30 = 8.66$
 $V_{40} = V_0 \cos \theta = 10 \cos 30 = 8.66$
 $V_{40} = V_0 \cos \theta = 10 \cos 30 = 8.66$
 $V_{40} = V_0 \cos \theta = 10 \cos 30 = 8.66$

$$V = 8.66 \hat{x} - 4.8 \hat{y}$$
 $|V| = \sqrt{8.66^2 + (-4.8^2)} = 9.9 m/s$
2) Max height | time to Max-height | Range
$$H = (\frac{\text{Vosin}\theta}{29})^2$$

$$E = \frac{\text{Vosin}\theta}{9}$$

$$R = \frac{\text{Vo}^2 \sin(2\theta)}{9}$$

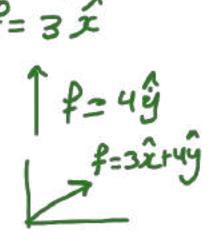
$$= (10 \sin 30)^{2} = 1.27m \qquad t = 10 \sin 30 = 0.51$$

$$R = \frac{10^{2} \sin (60)}{9.8} = \frac{8.8}{9.8}$$

CHAPTER 4 Force

القوة.

تامتر الاحبام مبعضا معتیاسا کمعت^ار انتفای بینا لاحیاح


Force:

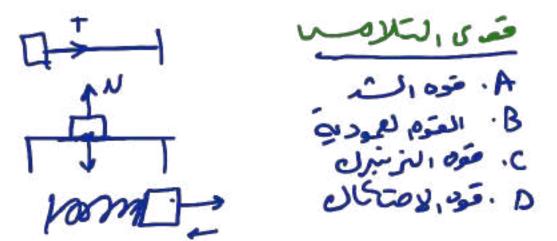
- The mean for objects to influence each other.
- A measure of how an object interacts with other objects
- All force are vectors

•
$$f = f_x \hat{x} + f_y \hat{y} + f_z \hat{z}$$

SI_unit: Newton (N)

In SI base units: $1 \text{ N} = 1 \text{kg.m/s}^2$

Types of forces


Fundamental Forces:

- A. Gravitational: Force where an object attracts another object toward itself.
- B. <u>Electromagnetic</u>: Attraction and repulsion forces associated with electric and magnetic fields
- Strong nuclear Force: which binds elementary particles to form larger particles.
- D. Weak nuclear Force: acts between elementary particles on the length scale of an atomic nuclei

Contact Forces:

- A. Tension Force: transmitted force through rope, cable, or wire when its pulled.

 B. Normal Force (Surface reaction): exerted force upon an object in contact with another stable object.
- Spring Force: exerted by compressing or stretching a spring attached to an object.
- Friction Force (Static or Kinetic): exerted force by a surface on an object moves across it. آری کال سنون او ج

Weight versus Mass

مقدار قوداکاد سے عم لیسے

• Gravitational force (\vec{F}_g): مغروا کی اد نہیم $F_g = W$

Magnitude:

$$w = mg$$

w: object's weight

m: object's mass

g: gravitational acceleration

W=mg

= 70×9.2

686 N

Direction:

$$\vec{F}_{\rm g} = -w\hat{y} = -mg\,\hat{y}$$
points in the –ve y-direction (-y)

Weight:

The magnitude of a force that acts on an object due to its gravitational interaction with the earth or another object

SI unit: Newton (N)

• Mass: عُلة

The amount of matter in the object.

Mass is scalar.

The term "mass" refers to the same physical concept as inertia

SI unit: kilogram (kg)

Assessment

Q1. Find the mass of a body that has 294 N weight

$$m = \frac{w}{9} = \frac{294}{9.8} = 30 \text{ kg}$$

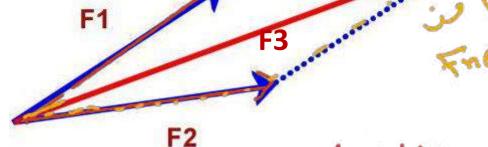
Q2. What is the gravitational force on a 20 kg body?

$$fg = W = mg = 20 \times 9.8 = 196 N$$

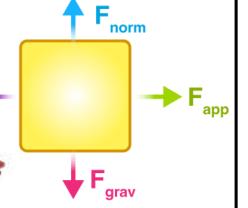
= - 196 g

Q3. if two forces act on a block, $\vec{F_1} = 8\hat{x} - 3\hat{y}N$ and $\vec{F_2} = -8\hat{x} + 3\hat{y} + 4\hat{z}N$ what is their net force?

$$F_{net} = F_1 + F_2 = (8\hat{x} - 3\hat{y}) + (-8\hat{x} + 3\hat{y} + 4\hat{z}) = 0\hat{x} + 0\hat{y} + 4\hat{z} = 4\hat{z}$$


Net Force

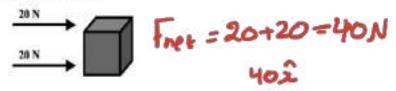
Net Force: the vector sum of all force vectors that acts on an object.


$$\vec{F}_{net} = \sum_{i=1}^{n} \vec{F}_i = \vec{F}_1 + \vec{F}_2 + ... + \vec{F}_n$$

$$\mathbf{F3} = \mathbf{F1} + \mathbf{F2}$$

Free-Body Diagrams

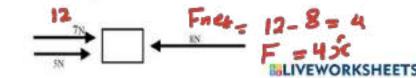
diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.


Net of Forces

<u>Instruction</u>: Calculate the net of forces act to an object and the direction of net forces.

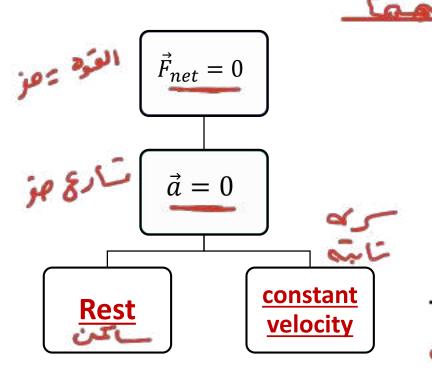
1. Look at the figure.

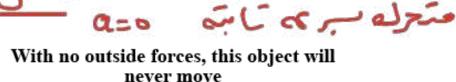
2. Look at the figure.


3. Look at the figure.

4. Look at the figure.

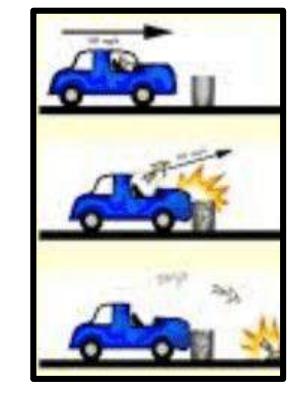
5. Look at the figure.

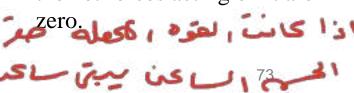

خاخوم منوتن الاول Newton's Laws I


معانف السبه للتعنير عي اكركة

Inertia: is an object resistance to change its motion

Newton's First Law: The law of inertia

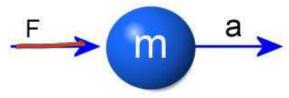

If the net force on an object is equal to zero, the object will remain at rest if it was at rest. If it was moving, it will remain in motion in a straight line with the same constant velocity.



With no outside forces, this object will never stop

 A particle is in EQUILIBRUM, the net forces acting on it are

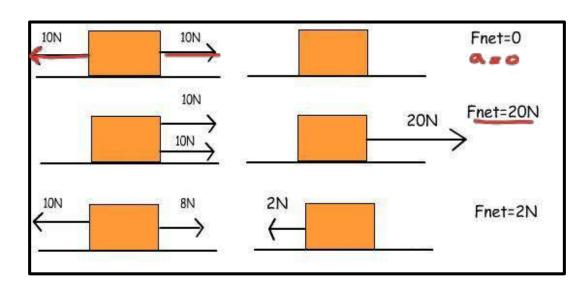
اتان فالأم ينونن <u>Newton's Laws II</u>


جهای ان الفوه ا عبری ان الفود عدم ا عبری ان الفود ا عبری ان الت رک الفود ا عبری ان الفود ا عبری ان الفود ا عبری ا بی ه الفود ا

Newton's Second Law:

If an net external force, \vec{F}_{net} , acts on an object with mass m, the force will cause an acceleration, \vec{a} in the same direction as the force:

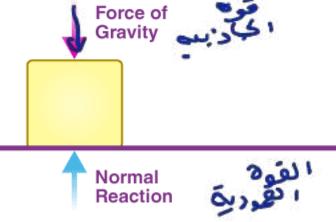
$$\vec{F}_{net} = m\vec{a}$$

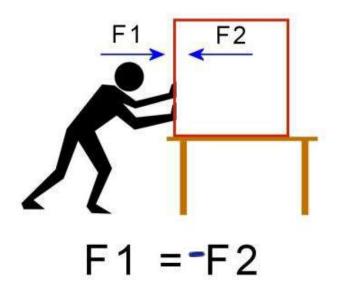

 Acceleration has the same direction of the net force that coursing it.

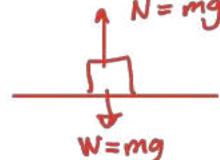
No Force No acceleration.(constant velocity)

• In 3D:

$$F_{net,x} = ma_x$$
 , $F_{net,y} = ma_y$, $F_{net,z} = ma_z$


Newton's Laws III


القوه اعتبادله مین حسین کون مستون کون مستون می الانجاد


Newton's Third Law:

the forces that two interacting objects exert on each other are always exactly equal in magnitude and opposite in direction:

$$\vec{F}_{1\rightarrow 2} = -\vec{F}_{2\rightarrow 1}$$

Normal Force (reaction):

القول العولة

contact force that acts at the surface between two objects.

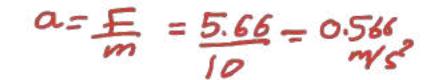
The Normal force <u>direction</u> is <u>always perpendicular</u> to the plane of the contact surface.

Assessment

Q1: When a force of 10 N Applied to a body and make it moves with acceleration of 2 m/s^2 . What is the body's mass? $m = \frac{1}{4} = \frac{10}{4} = \frac{5}{4} = \frac{10}{4} = \frac{10}$

Q2: two forces $\vec{F}_1 = -5\hat{x} - 3\hat{y} \, N$ and $\vec{F}_2 = 8\hat{x} + 3\hat{y} + 4\hat{z} \, N$ acts on a 20 kg block, what is the magnitude of the acceleration? $\vec{F}_{net} = 3\hat{x} + 4\hat{z}$ $|\vec{F}| = \sqrt{3^2 + 4^2} = 5N$ $Q = \frac{F}{M} = \frac{3}{4} = 0.25 \, \text{m/s}^2$

Q3: A particle of mass 3kg moves with acceleration of $5m/s^2$. Find the magnitude of the force acting on the particle? $F=m\alpha=3$ (5) = 15N

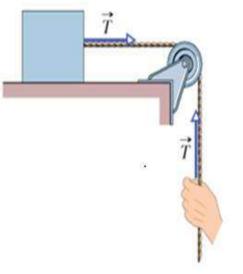

Q4: The force acting on a body of mass 10kg is 300N, Calculate its acceleration? $a = \frac{1}{100} = \frac{30m/s}{100}$

Q5: A 3kg object undergoes an acceleration given by $a=(2\hat{x}+5\hat{y})$ m/s2. Find the resultant acting force on it? $F=m\bar{\alpha}$ $F=3(2x+5y)=6\hat{x}+15\hat{y}$ $F=\sqrt{6^2+15^2}=16.2$ N

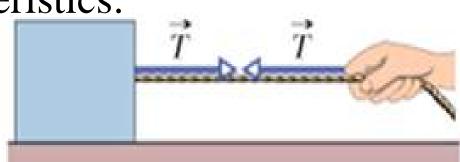
Q6: Two Forces acting on an object are given by $F1=(2\hat{x}+3\hat{y})N$, and $F2=(3\hat{x}+4\hat{y})N$. The object experiences an acceleration of magnitude 2m/s2. What is the mass of the object?

Q7: Two forces, $F1=(\hat{x}+2\hat{y})N$, and $F2=(3\hat{x}+2\hat{y})N$ acting on an object of mass 10kg. Find the magnitude of the acceleration?

Q6) Free=
$$5x+7\hat{\gamma}$$
 |F|= $\sqrt{5^2+7^2}=8.6N$ $m=\frac{E}{a}=\frac{8.6}{2}=4.3$ kg

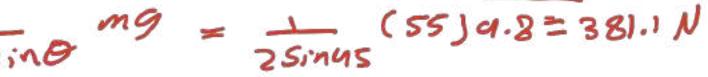


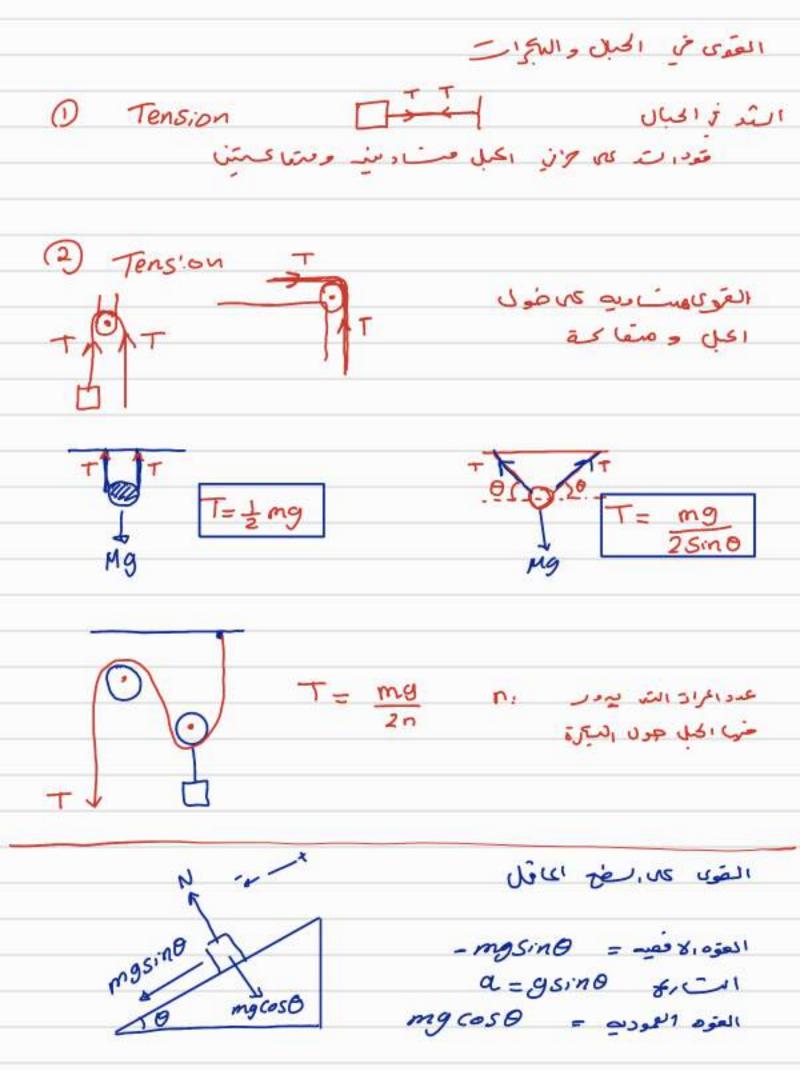
Ropes and Pulleys

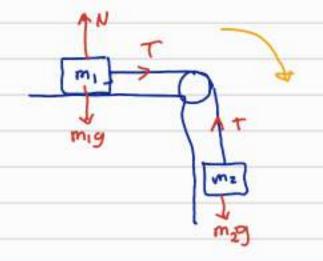

Tension in a rope has the following characteristics:

- 1. It is always directed along the rope
- 2. It is always pulling the object
- 3. It has the same value along the rope
- When rope runs over a pulley, the force has: Same magnitude

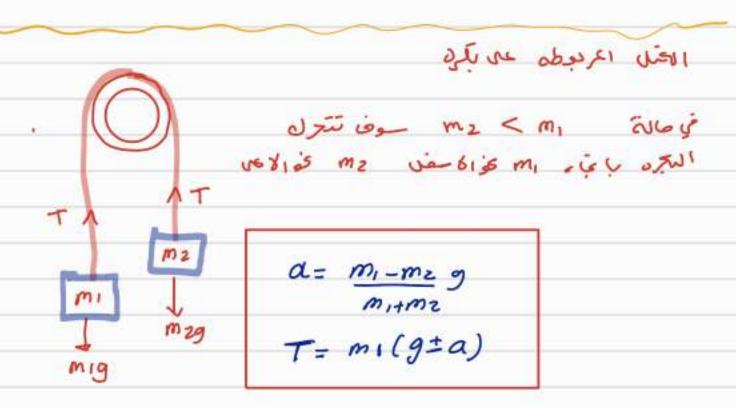
 • Different direction




Ropes and Pulleys


Forces for different cases	
TTT	T T T mg
$T = \frac{1}{2}mg$	$T = \frac{1}{2\sin\theta} mg$

- A gymnast of mass 55 kg hangs vertically from a pair of parallel rings.
 - 1. What is the tension in each rope if the ropes are vertically attached to the ceiling?
 - 2. What is the tension in each rope if the ropes are attached so that they make an angle θ = 45?



الاصبام الريوطه في الجرات في عامة: مام حف يترل العب

$$Cl = \frac{m_2}{m_1 + m_2} g$$

4.5 Ropes and Pulleys

• Force multiplier

$$T = \frac{1}{2n} mg$$

m: mass

T: tension required to left the mass with constant

n: times the rope turns over the pulleys

g: gravitational acceleration

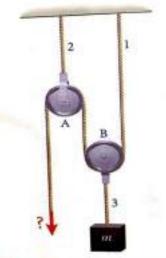


FIGURE 4.12 Rope guided over two pulleys.

خطوات حل المسائل

أولًا: القوى

1.ارسمي المحاور بحيث تكون نقطة الأصل في مركز الجسم

2.حددي القوى التي تؤثر على كل جسم في المسألة

3. حللي جميع القوى التي لا تقع على المحاور الرئيسية إلى مركباتها

ثانيًا: التسارع

4. حددي مركبات التسارع لكل جسم على المحاور الرئيسية (قد تحتاجين لتحليل متجه التسارع إذا لم يكن واقعًا على أحد المحاور)

<u>أخيرًا:</u>

5. طبقي قانون نيوتن الثاني.

6.حلي المعادلات الناتجة لإيجاد المطلوب

Rabab Al-Farraj

ملاحظات مهمة لحل المسائل

•مركبات القوى أو التسارع التي تشير إلى الاتجاه الموجب (اليمين أو الأعلى) نعوض عنها بإشارة موجبة في قانون نيوتن الثاني.

•مركبات القوى أو التسارع التي تشير إلى الاتجاه السالب (اليسار أو الأسفل) نعوض عنها بإشارة سالبة في قانون نيوتن الثاني.

•إذا كان الجسم يتحرك بسرعة ثابتة أو لا يتحرك مطلقًا (ساكنًا) على أحد المحاور فإن التسارع على ذلك المحور يساوي صفرًا

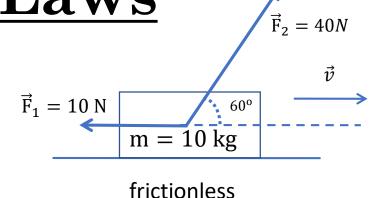
Rabab Al-Farraj 81

Example1:

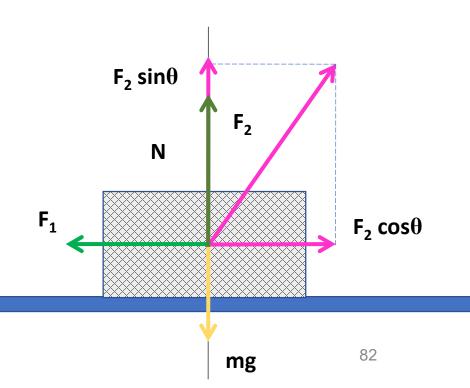
A box moves horizontally on a frictionless surface as shown:

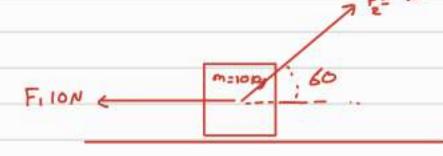
- 1. What is the acceleration?
- 2. What is the normal force?

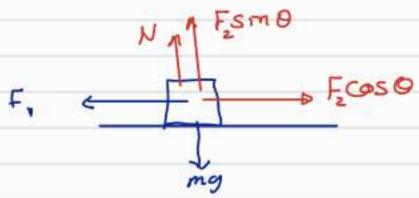
$$\underline{\text{x-axis:}} \ a_{\chi} = +a$$


$$F_2 \cos(\theta) - F_1 = +ma$$

 $40 \cos(60) - 10 = 10a$
 $20-10 = 10a$
 $10 = 10a$
 $a=1 m/s^2$


y-axis:
$$a_y = 0m/s^2$$


$$F_2 \sin(\theta) + N - mg = 0$$


$$40 \sin(60) + N-(10)(9.8) = 0$$

$$N=98-40 \sin(60)$$

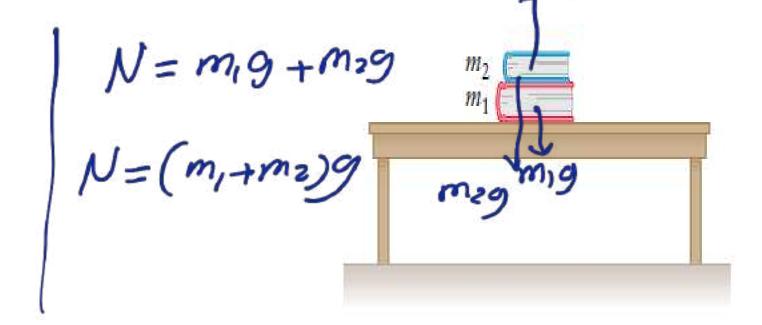
عاب الت, ع لايوم ت, ع با يان ك

ay=0 VI P CIS X OLE IN JULY FX

 $F_{x} = 20 - 10 = 10 N = 8$

 $ax = \frac{f_x}{m} = \frac{10}{10} = \frac{1m/s^2}{m}$

عب العود العردية عبد العرب العود عب عبد عبد العرب العرب العرب عبد عبد العرب العرب العرب عبد عبد العرب العرب


N 1 F25100 4051060 = 34.64 N Fy = N+Fzsin0-mg 0 = N + 34.64 - 98mg = 10 (9.8) = 98N

N= 98-34.64=63.36

• Example 2:

What is the normal force of the two books of an arbitrary masses on a table shown in figure?

$$\vec{F}_{net} = 0$$
 $\vec{N} + \vec{F}_{g1} + \vec{F}_{g2} = 0$
 $\vec{N} = -(\vec{F}_{g1} + \vec{F}_{g2})$
 $N = -(-m_1 g - m_2 g)$
 $N = (m_1 + m_2)g$

Note: Normal force points upward (+ve) and gravitational forces points downwards (-ve)

ار المناطقة المامة

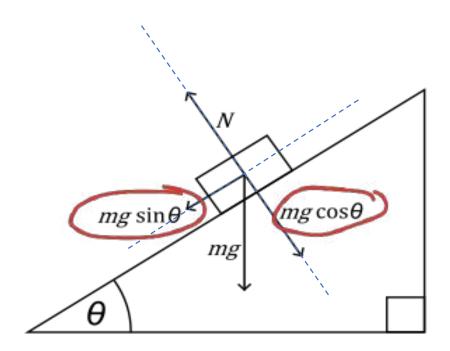
Inclined Plane (Wedge):

What is the acceleration and the Normal force?

Forces:

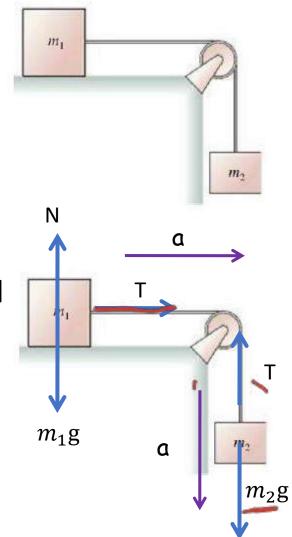
- ۱ کاریم
- 1. Gravitational force(mg)
- 2. Normal force (N)

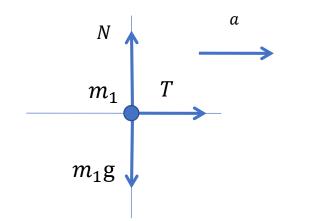
Horizontal axis:

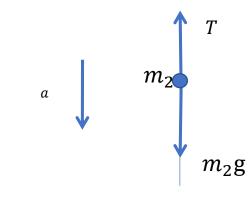

 $-mg \sin\theta = -ma$

 $a = g \sin \theta$

vertical axis:


 $N - mg \cos\theta = 0$


N = mg cose →



Two Blocks Connected by a Rope $m_1 < m_2$:

- Block m_1 placed on frictionless surface.
- Forces on block m_1 :
 - 1. Gravitational force m_1 g
 - 2. Normal force N
 - 3. Tension T
- Acceleration (a): In the same direction of tension [right direction = positive value]
- Forces on block m_2 :
 - 1. Gravitational force m_2 g
 - 2. Tension T
- Acceleration (α): downward direction = negative value

Block m_1

x-axis:

$$T = m_1 a \quad (1)$$

y-axis:

$$N - m_1 g = 0 \quad (2)$$

Block m_2

y-axis:

$$T - m_2 g = -m_2 a \quad (3)$$

Solving equations (1), (2) and (3) together to find for a, N and T:

$$a = \frac{m_2}{m_1 + m_2} g$$

$$N = m_1 g$$

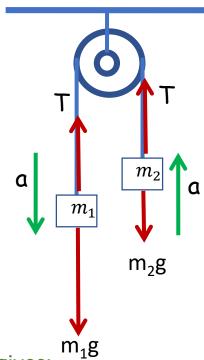
$$T = \frac{m_1 m_2}{m_1 + m_2} g$$

Atwood Machine

The Atwood Machine consists of two hanging weight (with masses m_1 and m_2) connected by a rope running over a pulley.

Find the tension force and acceleration?

Block m₁


Forces:

- 1. Gravitational force m₁g
- 2.Tension T

Acceleration (a) :Downward

<u>y-axis:</u>

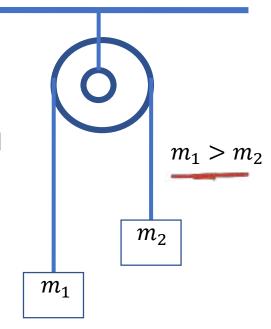
$$m_1 g - T = m_1 a \quad (1)$$

Block m₂

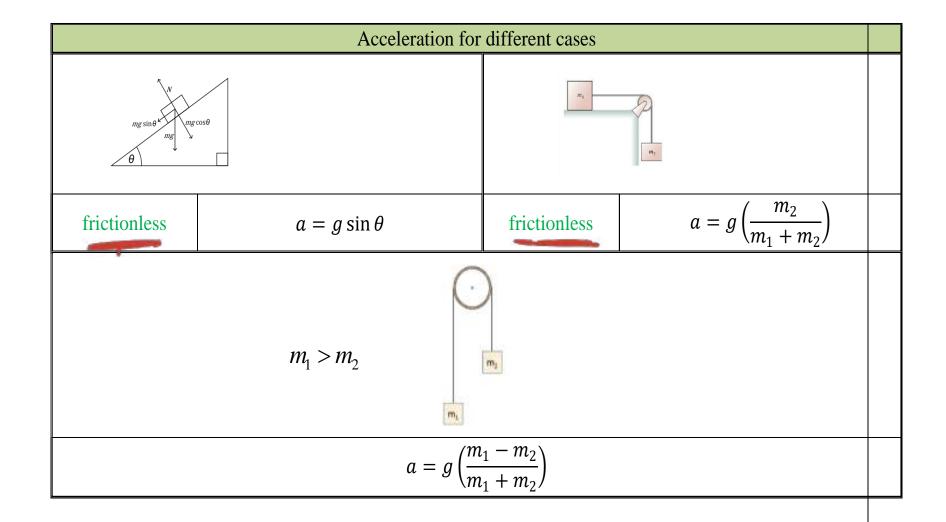
Forces:

- 1.Gravitational force m₂g
- 2.Tension T

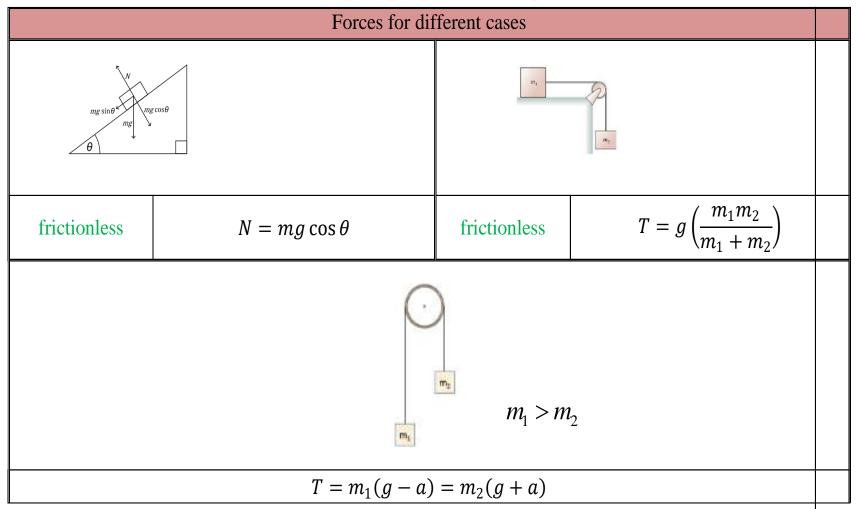
Acceleration (a): Upward

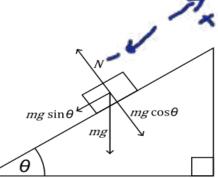

<u>y-axis:</u>

$$T - m_2 g = -m_2 a \quad (2)$$


Solving equations (1) and (2) together gives:

$$a = \frac{m_1 - m_2}{m_1 + m_2} g$$


$$T = m_1(g - a)$$
 or $T = m_1(g + a)$


Summary I

Summary II

<u>Assessment</u>

 m_2

Q6. A block (m = 2.7 kg) moves down a frictionless plane with an angle of 9°, what is its acceleration?

what is its acceleration?

$$O = -9s$$
 in $O = -9.8s$ in $Q = 1.533$ m/s²

Q7. Two blocks connected by a rope as shown in figure ($m_1 = 6.3$ kg and $m_2 = 3.5$ kg), what is the acceleration?

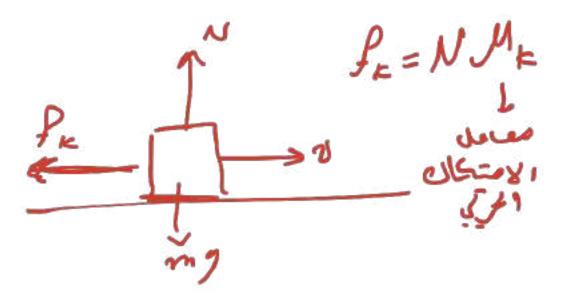
$$a = \frac{m^2}{m_1 + m^2} g = \frac{3.5}{6.3 + 3.5} (9.8) = 3.5 \, \text{m/s}^2$$

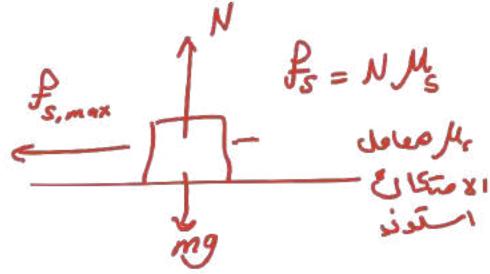
Q8. Two masses are suspended by a rope as shown in figure if $m_1 = 6.5 \text{ kg}$ and $m_2 = 2.5 \text{kg}$, what is the system acceleration?

$$Cl = \frac{m_1 - m_2}{m_1 + m_2} g = \frac{6.5 - 2.5}{6.5 + 2.5} (9.8) = 4.35$$

متوه ۱۵ صد کرارز Friction Force

Basic characteristic of friction:


- 1-If an object is at rest, it takes an external force with a certain threshold to overcome the friction force and make object move
- 2- The force needed to move an object at rest is greater than the force needed to keep it moving with constant velocity.
- 3- The magnitude of friction force is proportional to the normal force.
- 4- Friction force is independent on the area. قعود الا متحال متناسب مع العقو العردية
- 5- Friction force depends on the roughness of the surfaces.
- 6- Friction force is independent on velocity.


لا بعتمد می رسم عد

Friction Force types

اعت کا لے۔ کوی

- 1. static friction: the case where an object is at rest relative to its supporting surface
- 2. kinetic friction the case where the object moves across the surface

Static friction:

- •For any external force acting on an object that remains at rest, the friction force f_{S} equal in magnitude and opposite in direction to the component of the external force that acts along the contact surface between the object and its supporting force.
- •The magnitude of the static friction force has a maximum value

$$f_{s,\max} = \mu_s N$$

$$f_{s,\max} = \mu_s N$$

 $f_{s,\text{max}}$: maximum static friction force

 μ_s : c oefficient of static friction

N: Normal force m9

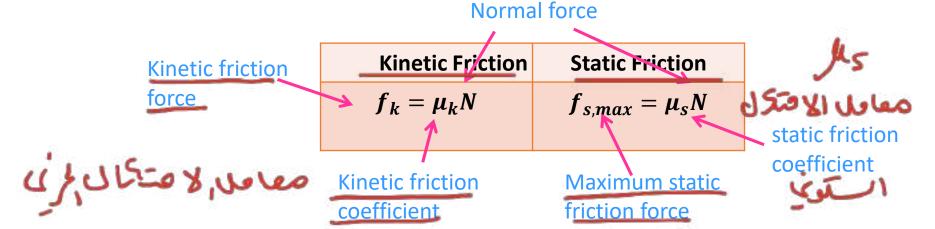
Kinetic friction:

دائ وودالا متكال عكم ا ياه ، كرك

Kinetic friction force is always opposite to the direction of motion of the object.

مانزم فوه , لامتكال
$$f_k = \mu_k N$$

$$f_k = \mu_k N$$


 f_k : kientic friction force

 μ_k : c oefficient of kinetic friction

N: N ormal force

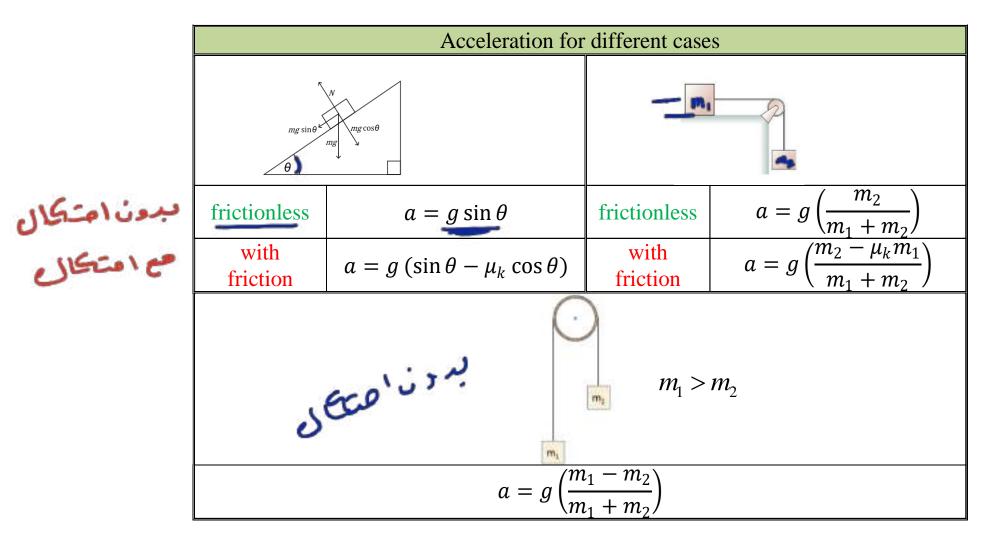
Friction Force Summary

• Friction coefficient is always equal to or greater than zero

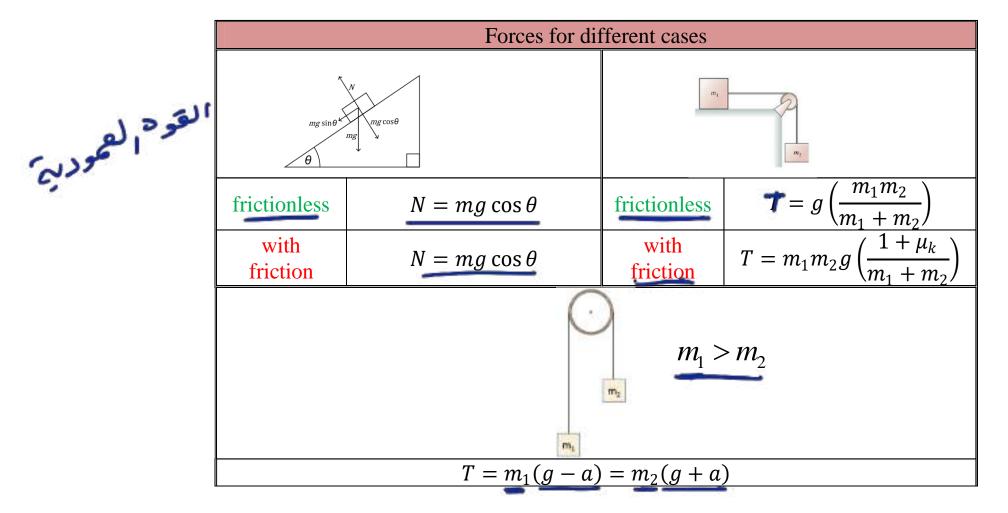
In almost all cases, is less than 1.

$$1 > \mu \ge 0$$

Friction coefficient has no unit


$$\mu_{s} > \mu_{k} \text{ or } \mu_{k} < \mu_{s}$$

$$\mu_{s} > \mu_{k} \text{ or } \mu_{k} < \mu_{s}$$


$$\mu_{s} > \mu_{k} \text{ or } \mu_{k} < \mu_{s}$$

Applying Newton's Laws with friction

Applying Newton's Laws with friction

Assessment

Q1:

A block (m = 2.7 kg) moves down a plane with an angle of 9° . If the <u>friction coefficient equals 0.3</u>, what is its acceleration? Q2:

A block of mass 5kg which slides down on a plane having an inclination of 15 degrees.

- 1. Calculate the normal force?
- 2. Calculate the acceleration, assuming the plane is frictionless?
- 3. Calculate the acceleration again assuming the plane has a friction coefficient equal to 0.25?

Q3:

A 5Kg object is placed on a table and is connected to a 9kg object using a cord that passes over a pulley:

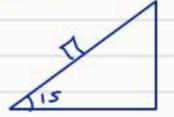
- 1. Calculate the normal force, tension force, and acceleration assuming the table is frictionless?
- 2. If the table friction coefficient is 0.3, recalculate the tension force and the acceleration?

Q4:

A particle experiences multiple forces as follows:

$$\vec{F_1} = [(-3)\hat{x} + 3\hat{y} + 4\hat{z}]N, \vec{F_2} = [\hat{x} - 5\hat{y} - 4\hat{z}]N, \vec{F_3} = [A\hat{x} + B\hat{y} + C\hat{z}]N$$

If the particle at equilibrium (The net force is zero), what are the parameters A, B, and C that satisfy this state?


A block (m = 2.7 kg) moves down a plane with an angle 49°. If the friction coefficient equals 0.3, what is its acceleration

$$a = g(\sin \Theta - M_{K}\cos \Theta)$$

= 9.8(\sin 9 - 0.3Cos 9)
 $a = -1.37 m/s^{2}$

Q2:

A block of mass 5kg which slides down on a plane having an inclination of 15 degrees.

- Calculate the normal force?
- Calculate the acceleration, assuming the plane is frictionless?
- Calculate the acceleration again assuming the plane has a friction coefficient equal to 0.25?

2)
$$\alpha = g \sin 15 = 9.8 \sin 15$$

= 2.45 m/s²

3)
$$0 = g(s, n\theta - M\cos\theta)$$

= 9.8 (sin 15 - 0.25 cos 15)
 0.169 m/sz

03

A 5Kg object is placed on a table and is connected to a 9kg object using a cord that passes over a pulley:

- Calculate the normal force, tension force, and acceleration assuming the table is frictionless?
- If the table friction coefficient is 0.3, recalculate the tension force and the acceleration?

$$= 9 \times 5 \times 9.8 \left(\frac{1+0.3}{14} \right) = 40.95 N$$

2F=0

Q4:

A particle experiences multiple forces as follows:

$$\overrightarrow{F_1} = [(-3)\hat{x} + 3\hat{y} + 4\hat{z}]N, \overrightarrow{F_2} = [\hat{x} - 5\hat{y} - 4\hat{z}]N, \overrightarrow{F_3} = [A\hat{x} + B\hat{y} + C\hat{z}]N$$

If the particle at equilibrium (The net force is zero), what are the parameters A. B. and C that satisfy this state?

$$F_1 + F_2 + F_3 = 0$$

 $(-3+1+A)\hat{x} + (3-5+B)\hat{y} + (4-4+C)\hat{z} = 0$
 $-2+A=0$ $A=2$
 $-2+B=0$ $B=2$
 $0+C=0$ $C=0$

CHAPTER 5

Kinetic Energy, Work, and Power الفترة المائة المرتبع

Energy in our daily lives

- 1. Mechanical energy: <u>Kinetic energy</u> & Potential energy
- 2. Thermal Energy
- 4. Electromagnetic energy
- 5. Solar energy
- 6. Electrical energy
- 7. Nuclear energy

Kinetic Energy

الطاقه الحرسه

١ ي هم له كتله

له طانة

الطاته اعرسبطه بالحاركة

- Energy associated with motion
- Kinetic Energy :

$$K = \frac{1}{2} mv^2$$

K: kinetic energy

عدادواي الطاقة تق سويوه و اكول

m: mass

٧: velocity المعاامة المحرية = معرية عربع الربحة المحتلة المحتلة المحرية المحتلة الم

• Kinetic energy is scalar.

• Unit : Joule (J)

• $1J = 1 Nm = 1kg.m^2.s^{-2}$

• Kinetic energy is always positive or zero (K=0 for an object at rest)

طامة اكرته دايمًا صوصه ١٠ جعز

Other units for energy:

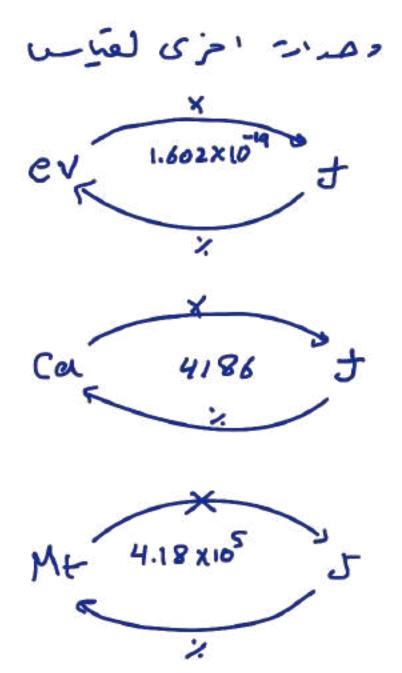
$$1ev = 1.602 \times 10^{-19} J$$

$$1 \text{ cal} = 4186 \text{ J}$$

$$1 Mt = 4.18 \times 10^{15} J$$

Kinetic energy in 3D:

•
$$v^2 = v_x^2 + v_y^2 + v_z^2$$


•
$$K = \frac{1}{2}mv^2$$

•
$$K = \frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_z^2$$

Assessment

Q1. What is the Kinetic energy of 30 kg object moves in 4 m/s?

Q2. The kinetic energy of a 2 kg object is 100 J. Find its velocity.

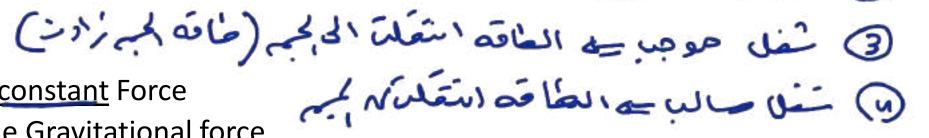
$$M = 2 \text{ kg}$$
 $KE = 100$ $V = 2$;
 $V = \int \frac{2K}{m} = \int \frac{2(100)}{2} = 10 \text{ m/s}^2$

$\overline{\mathbf{Work}}$

Work:

The energy transferred to or from an object due to the action of a force.

تنتغی الطامة حناوای المبرست عمل تفوم به قعه است عمل تفوم به قعه است تنفی به الطامة حمر تعلی الانتال ا

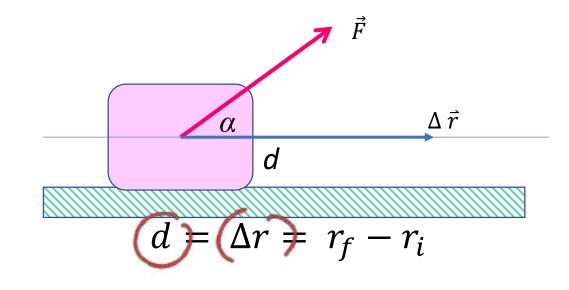

- Work is **scalar**
- SI unit : Joule (J)
- Positive work: Transfer of energy to the object.
- Negative work: Transfer of energy from the object.

الم معمومياسية

2 الوعده - عجر

Contents:

- Work Done by a <u>constant</u> Force
- Work Done by the <u>Gravitational</u> force
- Work Done by a <u>varying</u> Force



Work Done by a Constant Force

Work is given by

$$W = \vec{F} \Delta \vec{r}$$

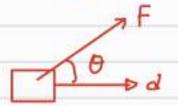
Using scalar product

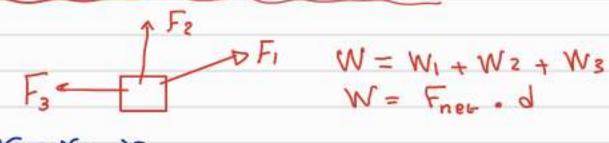
angle between F and d

 For more than one force acting on the object

$$W_{net} = \overrightarrow{F}_{net} \cdot \Delta \vec{r}$$

ı or:


$$W_{net} = W_1 + W_2 + \dots + W_n$$


The net work done by the net force is equal to the sum of the work done by the individual forces.

<u>Maximum work</u>	<u>No work</u>
\overrightarrow{F} and $\Delta \overrightarrow{r}$ in the same	$ \overrightarrow{F} $ and $\Delta \overrightarrow{r}$ perpendicular
direction	(normal)
$\alpha = 0$	α = 90°
W = Fd	W=0 105

المشفل اعبدول مذعود كابنه

Mathematical Insert: Scalar Product of Vectors

•
$$\overrightarrow{A} = (A_x, A_y, A_z) \overrightarrow{B} = (B_x, B_y, B_z)$$

Scalar product

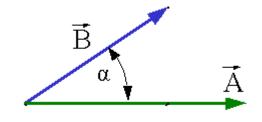
1.
$$\overrightarrow{A} \cdot \overrightarrow{B} = AB \cos \propto$$

2.
$$\overrightarrow{A} \cdot \overrightarrow{B} = A_x B_x + A_y B_y + A_z B_z$$

3.
$$\overrightarrow{A} \cdot \overrightarrow{B} = \overrightarrow{B} \cdot \overrightarrow{A}$$

(commutative) تبدیلت

$$4. \quad \overrightarrow{A} \cdot \overrightarrow{A} = \left| \overrightarrow{A} \right|^2$$


5.
$$\propto = \cos^{-1}(\frac{\overline{A}.\overline{B}}{AB})$$

6.
$$\overrightarrow{A} \cdot (\overrightarrow{B} + \overrightarrow{C}) = \overrightarrow{A} \cdot \overrightarrow{B} + \overrightarrow{A} \cdot \overrightarrow{C}$$
 (Distributive)

7.
$$\hat{x} \cdot \hat{x} = \hat{y} \cdot \hat{y} = \hat{z} \cdot \hat{z} = 1$$

$$\mathcal{S}. \quad \hat{x}.\hat{y} = \hat{x}.\hat{z} = \hat{y}.\hat{z} = 0$$

Assessment

Q1: What is the angle α between the two positive vectors $\overline{A} = (4,2.5)cm$ and $\overline{B} = (4.5,4,3)cm$?

Q2. A constant force $\vec{F} = 2\hat{x} + 2\hat{y}$ N acts on a particle causing a displacement $\vec{r} = 3\hat{x} + \hat{y}$ m, what is the work done by the force on the particle?

Q3. A 50N force pulled a box on the ground from x1=0m to x2=6m, Find the work done by this force on the particle.

Assessment

Q1: What is the angle α between the two positive vectors $\overrightarrow{A}=(4,2.5)cm$ and $\overrightarrow{B}=(4.5,4,3)cm$?

$$\vec{A} \cdot \vec{B} = 4(4.5) + 2.5(4) + 0(3) = 28$$

 $|A| = \int 4^2 + 2.5^2 = 4.716$ $|B| = \int 4.5^2 + 4^2 + 3^2 = 6.727$

$$CoSX = A \cdot B = 28 = 28.06^{\circ}$$
 $IAIIB$ (4.716)(6.727)

Q2. A constant force $\vec{F} = 2\hat{x} + 2\hat{y}$ N acts on a particle causing a displacement $\vec{r} = 3\hat{x} + \hat{y}$ m, what is the work done by the force on the particle?

$$W = Fdecs 0 = F \cdot d =$$

$$(2\hat{x} + 2\hat{y}) \cdot (3\hat{x} + \hat{y}) = 2(3) + 2(1)$$

$$= 8d$$

Q3. A 50N force pulled a box on the ground from x1=0m to x2=6m, Find the work done by this force on the particle.

$$\chi_{=0}$$
 $\chi_{2=6}$

السفل اعمعذل

الحركه في دعدواهر

Work Done by a Constant Force in 1D

■ For one dimension case:

$$F \rightarrow F_{x}$$

$$\Delta r \longrightarrow \Delta x$$

■ Then the work

$$W = F_x \, \Delta x = F_x \, (x - x_0)$$

اذا ىن العود والازامه بشف الاى

• If the force and displacement points in the same direction

$$(\alpha = 0, \cos \alpha = +1) \Rightarrow \underline{W} = Fd$$
 (positive work)

• If the force and displacement points in the opposite direction

$$(\alpha = 180^{\circ}, \cos \alpha = -1) \Rightarrow W = -Fd \text{ (negative work)}$$

Work – kinetic energy theorem:

The relationship between kinetic energy of an object and the work done by the forces acting on it.

$$\Delta K = K - K_0 = W$$

Where K and K_o are the final and initial kinetic energy and W is the work.

Assessment:

The driver of 1000 kg car traveling at speed of 16.7 m/s applies the car brakes when he sees a red light, what is the work needed to stop the car?

لظريه القل والعاقه

$$K_{0} = \frac{1}{2}(2)(1)$$
 $K = \frac{1}{2}(2) = 2$
 $K_{0} = 1$
 $K = 25f$
 $K_{0} = 1$
 $K_{0} = 1$

Assessment:

W= 25-1 = 24J

The driver of 1000 kg car traveling at speed of 16.7 m/s applies the car brakes when he sees a red light, what is the work needed to stop the car?

$$M = 1000 \text{ kg}$$
 $k = \frac{1}{2} \text{ m/s}$
 $V = 16.7 \text{ m/s}$
 $V = 0 \text{ m/s}$
 $V = 0 - \frac{1}{2} \text{ m/s}$
 $V = -\frac{1}{2} (1000) (16.7)^2 = 139445 \text{ k}$
 $V = -139.445 \text{ k}$

التقل المسترل من فؤه الحارب

Work Done by the Gravitational force

The work done by the gravitational force on an object falling down

$$W_g = mgh$$
 (down) $W=mgh$ Where h is height that an object falls.

Since the displacement and the force point in the same direction \Rightarrow the work is positive (W > 0) \Rightarrow it increases the kinetic energy of the object

ا مكون المقل موجى و ننزاد الطاق

Work Done by the Gravitational force

The work done by the gravitational force on an object tossed vertically upward is

$$W_g = -mgh$$
 (up)

Where h is height that an object moves upward.

لان دلعوه و الازاهم كاسم نعفي ادا القل ص حب و تقل العاقم اكرتمه

Since the displacement and the force point in the opposite directions \Rightarrow the work is negative (W < 0) \Rightarrow it reduces the kinetic energy of the object during its upward motion.

سُعل القوم في مجال اي زيد الارهم لرفع او حفض جم

Work Done in Lifting and Lowering an Object

•For <u>lifting</u>:

$$W_F = mgh$$

سند متوه ,کنعف

• For lowering:

$$W_F = -mgh$$

Assessment

Example 5.3 (weightlifting) pa.144

Problem1:

A lifter lifted 257.5 kg to a height of 1.83 m and held it there, what was the work he did in this process? W = mgh = 257.5 (9.8)(1.83) = 46185

Problem2:

What was the work done by him in lowering the weight slowly back down to the ground? W = -mgh = -46/8 //

الرفع بالهجرات Lifting with Pulleys

The same amount of work is done because it is necessary to compensate for reduced force by pulling the rope through a longer distance.

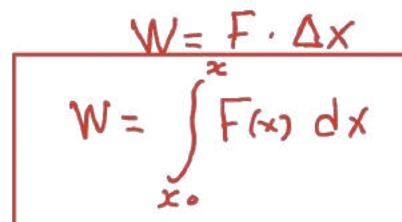
القل اعبدول حذ العول اعتقره

Work Done by a Variable Force

$$W = \int_{x_o}^{x} F_{x}(x') dx'$$

Example:

Spring Force: عَدِهِ، لنرسْرك


Hooke's Law

k : spring constant.

Spring constant unit: N/m

 $F_{\rm S} = -kx$

رب تباسز اسم شمر ل

$$W_{S} = -\frac{1}{2}kx^{2}$$

$$W = -k \int_{X}^{X} dy = -k x^{2}$$

Power

المعتدة

المعدل الرهني لانجاز المهل

Power: the rate at which work is done

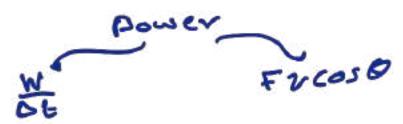
بنوسه کان المنه
$$P = \frac{dW}{dt}$$

Average power

$$P = \frac{W}{\Delta t} \stackrel{\checkmark}{} \sim ;$$

SI unit: Watt (W)

$$1W = \frac{1J}{s} = 1Kg.\,m^2/s^3$$


Power for Constant Force:

$$P = \vec{F} \cdot \vec{v}$$

$$P = Fv \cos \alpha$$

الغدره (۹)= Wall = 0,000 p 1w= 13/s= 1kgm2/s3 العدرة = العقوه (السرمه) ٥-١١

Where P is the power, F is the constant force, v is the velocity of the object and α is the angle between the force vector and the velocity vector.

Assessment

Q6. What is the power needed to lift a 49 kg person a vertical distance of 5 m in 20 s?

$$P = \frac{W}{4} = \frac{mgh}{4} = \frac{49(9.8)(5)}{20} = 120.05$$
 wath Q7. If a force of 14 N acts on a body and makes it moves with

Q7. If a force of 14 N acts on a body and makes it moves with velocity of 3 m/s. what is the power?

CHAPTER 6

potential energy and energy Conservation

عفظ الطافة طاقة الرفع المعافة الطافة عند الموجه المجاذبية الماء المعافة المحادث المحادث المحادث المحادث المحادث المحددة المحد

طاقه الوض

Potential Energy

the energy stored in the configuration of a system of objects that exert forces on each other.

• Gravitational Potential Energy (U)

$$U = mgy$$

• potential energy is scalar.

• Unit : Joule (J) :
$$1J = 1 \text{ Nm} = 1 \text{kg.m}^2 \cdot \text{s-}^2$$

• The change of the potential energy is given by

$$\Delta U = U - U_o = mg(y - y_o)$$

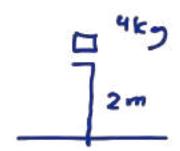
$$\Delta U = mgh$$

• The work for lifting an object is given by

$$W = -mgh$$

• Thus,

$$\Delta U = -W$$


$$g = 9.8m/s^2$$

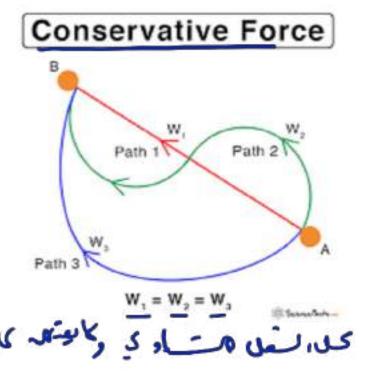
m is the mass

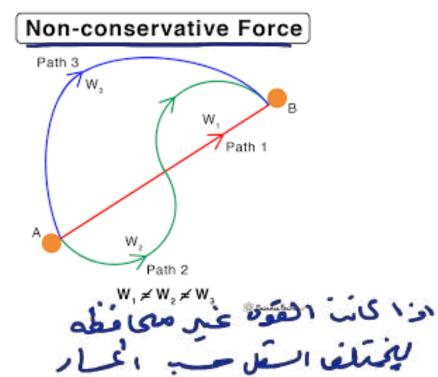
y is the height

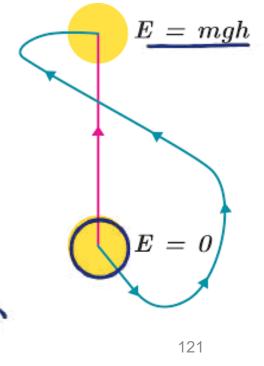
h is the height of the object.

Assessment

Q1. What is the gravitational potential energy of 4Kg body placed at 2m above the floor?


ا لارتف ع


Q2. What is the height of 10 kg body that has potential energy of


$$U = mgy$$
 $y = \frac{U}{mg} = \frac{981}{9.8 \times 10} = 1 m$

عير محانطة Conservative and nonconservative Forces

- A Conservative force: any force for which the work done over any closed path is zero.
 - $W_{B\rightarrow A} = -W_{A\rightarrow B}$ or $W_{B\rightarrow A} + W_{A\rightarrow B} = 0$
 - Independent of path, i.e.
 - $W_{A\rightarrow B,path\ 2} = W_{A\rightarrow B,path\ 1}$
- Nonconservative force : any other force

-50

Examples Conservative and nonconservative Forces

-C -\ J)								
می فغه و م	Force	Туре	Equation	Potential Energy				
ی قفه و کار	و زن Weight ک	C <u>onservative</u>	mg	mgh —	طامته الوضع اكاذبيه			
	نبرك Spring	C <u>onservati</u> ve	kx	$\frac{1}{2}$ kx ²	عامة وضع نرشرك ح			
	Coulomb (Conservative	$\frac{kq_1q_2}{r^2}$	kq₁q₂ r	طامته وضع محمربانيه و			
ے امتکال	Friction	Non-conservative	μΝ	_	عوه الاصتات ط			
ے معاومتم کمواد	Air Drag	Non-conservative	Cd <u>ρν²</u> Α 2	-	شره معاه مم /موای ح			
		129		ķ	™			

Table 4.3 C	Comparison of	conservative and	l non-conservative forces
-------------	---------------	------------------	---------------------------

5040°	5.No	Conservative forces	Non-conservative forces	
التعللا لعيتعد المانحسار	1.	Work done is independent of the path	vork done depends apon the path	اشكل لمقة مدى المسار
لبردوره = صو.	شعل2	Work done in a round trip is zero	Work done in a round trip is not zero	
نه الثاليه شابته	الطة	Total energy remains constant	Energy is dissipated as heat energy	العاندت لاخي عما تكل
مسترد بالكامل	الثغكل	Work done is completely recoverable	Work done is not completely recoverable,	لاستود بتكل كاما
عدارة لفاء:	5	Force is the negative gradient of	No such relation exists.	*** *** *** **************************
ما المانين المانين		potential energy	لا بعد عدى الأقدس لقوم و المامة	122

عوى , لا عدى الله على على العظمة

Friction Forces are nonconservative

■ The work done by a constant force to slid a box across a horizontal surface from point A to point B is given and then back from B to A is

$$W = -2\mu_k mg(x_B - x_A)$$

$$W = -2\mu_k mg(x_B - x_A)$$

■ The total work done friction force on the closed path is <u>not zero</u>.

متحه عنوه اللحتكال دائ تكون صوارى ومعاكل لمديحه السرعة

■ The friction force vector is always antiparallel to the velocity vector

(i.e. they are in opposite directions)

Any force with this property cannot be conserved

$$F_{f} = \mathcal{H}_{K} mg \qquad \qquad W = 2 \mathcal{H}_{K} mg (x_{B} - x_{A})$$
which is a value of the state of th

Work and Potential Energy

For any conservative force, the change in potential energy is equal to the negative of the work done by the conservative force

$$\Delta U = -W$$

المنت = مقدار التعبري

Potential Energy and Force

The force can be derived from the potential energy:

• 1D:

$$F(x) = -\frac{dU}{dx}$$

• 3D:

$$\vec{F}(\vec{r}) = -\left[\frac{\partial U}{\partial x}\hat{x} + \frac{\partial U}{\partial y}\hat{y} + \frac{\partial U}{\partial z}\hat{z}\right]$$

Assessment

Q3. A particle is moving along the x-axis subject to the potential energy $U(X) = x^2 + x + 4$ J, what is the net force on the particle at x=5m?

$$F = \frac{dU}{dx} = 2x + 1$$

$$F = 2x + 1$$

= 2(5) + 1 = 11N

125

X=5 \ \si

حفظ

الطاقة المسجانيكية

E=U+k

6.5 Conservation of Mechanical Energy:

لفاع مصرول

النطام المعذول :- تلا ترميه الاحبم بقوه للدون قوى كارجه تودي إلى نعير الطاعة

Isolated system: a system of objects that exert force on one another but for which no force external to the system causes energy changes within the system.

النطام المعنول اله لايوجه طاقة تنخول ا د تدخل ا ك النفام

(no energy is transferred into or out of the isolated system)

Mechanical energy E

E = K + U

العاقة كمكانكية العاقم كركة

For isolated system with only conservative forces, the total energy is conserved

$$\Delta E = \Delta K + \Delta U = 0$$

$$K + U = K_0 + U_0$$

خي صالحة النظام المحمزول

For conservative force isolated system.

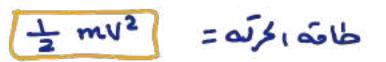
والعوه محاطه تكون الطاقه المسكانيك

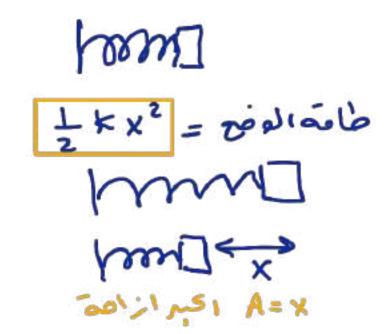
فعفرفة

التعبير مراطاته اعكامتيه - صغر

الذنين

Work and Energy for the Spring Force:


• For block-spring system, the total energy E is given by:

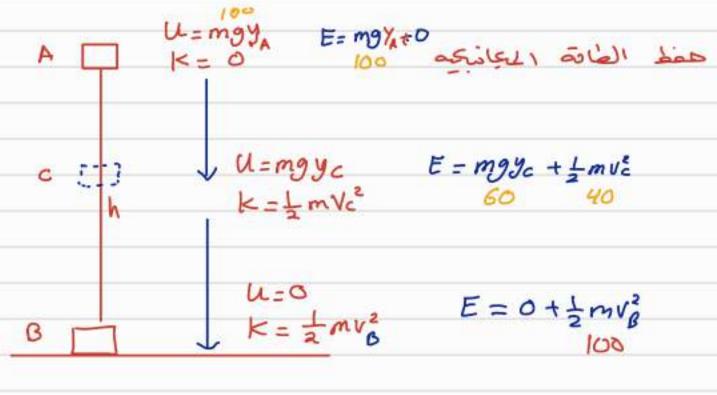

$$E = K + U = \frac{1}{2}mv^2 + \frac{1}{2}kx^2$$

عند نفط ای انضاط

At the maximum point x=A

$$E = \frac{1}{2}kA^2$$

Where A is the amplitude (maximum elongation of spring from equilibrium position)


احق تد او انفضاط للذنبرك

Thus, the speed of the block at any point x is given by

$$v = \sqrt{(A^2 - x^2) \frac{k}{m}}$$

$$|x| = \sqrt{(A^2 - x^2) \frac{k}{m}}$$

ما دفر می کسان مسمحه الترشیرل فر ای کی فحه

عند معقط الحب متحول طاقه الوجه الحاجامة عركه و مندداد السرية

الطاقه الميكانيم عنداي تقطة دايًا كابة

E = k + U = constant $\Delta E = \Delta k + \Delta U = 0$

طاقه الوض عد اعدنقله = طاقة إلا مناعل نعقة

mgyA = = = m Ve

CHAPTER 7

Momentum and Collision

الزخم الحظي

التصادم

Linear Momentum: P

الزحم = حزب التحله x السوعة $\vec{P} = m \vec{V}$

Momentum: the product of an object's mass and its velocity

$$\vec{P} = m\vec{v}$$

- Momentum is vector.
- It points in the same direction as velocity.
- SI Unit : $1 \text{kg m/s} = 1 \text{kg.m.s}^{-1}$
- Momentum and Force

$$\vec{F} = \frac{d\vec{p}}{dt}$$

Momentum and Kinetic Energy

$$K = \frac{p^2}{2m}$$

العلامة من الزخم و الطاقة
$$\frac{\rho^2}{2m}$$
 = $\frac{1}{2}$

Assessment

Q1. Find the momentum of 10 kg cannonball moving with

speed of 120 m/s?

Q2. If $p = 3t^2 + 2t$ kg.m/s, find the force F at t=1s. F- $\frac{dP}{dt} = 6t^2 + 2$

Q3. Find the kinetic energy for a 2kg particle with linear momentum of 10 kg m/s

$$k = \frac{P^2}{2m} = \frac{10^2}{2(2)} = \frac{100}{4} = 25 t$$

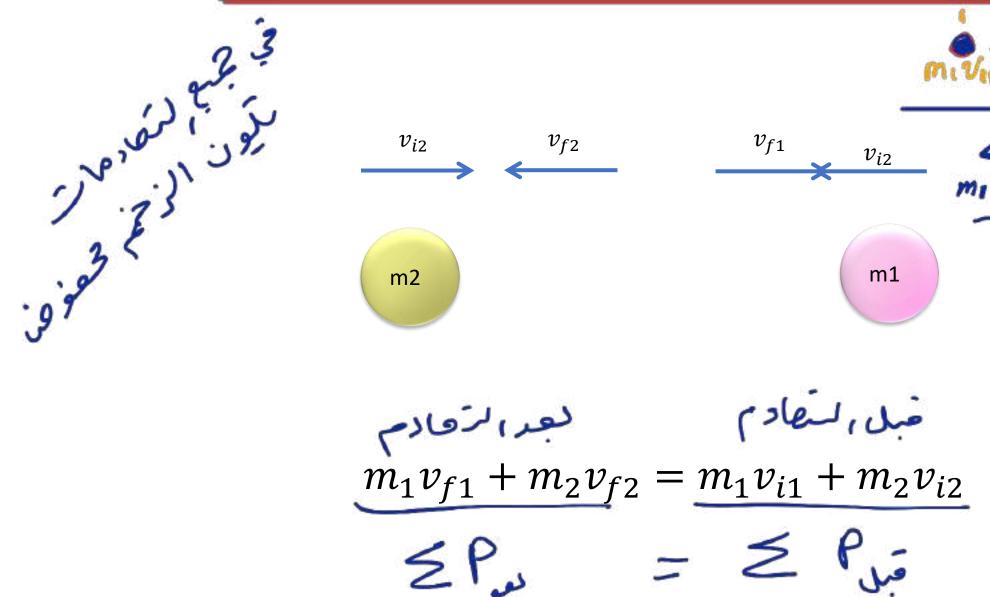
Rabab Al-Farraj 130

P=50

mpulse: the time integral of force or the change in momentum.

• Impulse is vector.

• SI unit: kg.m/s or N.s


$$\vec{J} = \Delta \vec{p} = \vec{p}_f - \vec{p}_i$$

For constant force

$$\vec{I} = \vec{F} \Delta t$$

هِفط الزحم الحنفي

Conservation of Linear Momentum

m2 V2 g

Conservation of Linear Momentum

انزع لتسادحات

• Types of collision:

- Elastic collision
- Inelastic collision فيرمرن
- Totally inelastic collision عديم المرينة

المرئ: - الزخم فحفوظ رالطاقه محفوظة عبرمرن: _ ، الزخم محفوط الطاقه عيم محمنوفة عديم عرونة بد الزحم محفوط الطاقة عيم محفوفة الاحبام تندجج بعفها دعد لتعامم

Conservation of Linear Momentum

The sum of the momentum after collision is the same as the sum of momentum before collision.

$$\vec{p}_{f1} + \vec{p}_{f2} = \vec{p}_{i1} + \vec{p}_{i2}$$

For one dimension:

$$m_1 v_{f1} + m_2 v_{f2} = m_1 v_{i1} + m_2 v_{i2}$$

قالفن عفظ الرحم : عجوى الرحم فل التمام سياءى مموى لرح للم الركادم