

Umm Al-Qura University
College of Computing
Department of Computer and Network Engineering
CEN0601: Discrete Models
Assignment #2
Term: Fall 2025

Rules for Submitting Homework Assignments:

- . Use a text editor to compose your answer to this assignment .
- . Accepted file formats are PDF and DOC.
- . Homework is only accepted on the due date in the designated assignment on Blackboard (No late submissions are accepted).

CEN0601: Discrete Models

Assignment #2

Term: Fall 2025

Question 1

Suppose that $A = \{2, 4, 6\}$, $B = \{2, 6\}$, $C = \{4, 6\}$, and $D = \{4, 6, 8\}$.

- Find $A \cup B$, $A \cup C$, and $A \cap D$.
- Determine which of these statements are true: $B \subseteq A$, $C \subseteq A$, $B \subset D$, $C \subset D$.

Answer:

- $A \cup B = \{2, 4, 6\}$, $A \cup C = \{2, 4, 6\}$, $A \cap D = \{4, 6\}$.
- $B \subseteq A$: True, $C \subseteq A$: True, $B \subset D$: False, $C \subset D$: True.

Question 2

Let $A = \{a, b, c, d\}$ and $B = \{y, z\}$. Find:

- $A \times B$.
- $B \times A$.

Answer:

- $A \times B = \{(a, y), (a, z), (b, y), (b, z), (c, y), (c, z), (d, y), (d, z)\}$.
- $B \times A = \{(y, a), (y, b), (y, c), (y, d), (z, a), (z, b), (z, c), (z, d)\}$.

Question 3

Find the sets A and B if $A - B = \{1, 5, 7, 8\}$, $B - A = \{2, 10\}$, and $A \cap B = \{3, 6, 9\}$.

Answer:

$$A = (A - B) \cup (A \cap B) = \{1, 3, 5, 6, 7, 8, 9\}.$$

$$B = (B - A) \cup (A \cap B) = \{2, 3, 6, 9, 10\}.$$

Question 4

Let A, B, and C be sets. Use the membership table to show that:

$$\neg(A \cup B) \cap \neg(B \cup C) \cap \neg(A \cup C) = \neg A \cap \neg B \cap \neg C$$

Solution (Membership Table):

A	B	C	$\neg(A \cup B)$	$\neg(B \cup C)$	$\neg(A \cup C)$	$\neg(A \cup B) \cap \neg(B \cup C) \cap \neg(A \cup C)$	$\neg A \cap \neg B \cap \neg C$
0	0	0	1	1	1	1	1
0	0	1	1	0	0	0	0
0	1	0	0	0	1	0	0
0	1	1	0	0	0	0	0
1	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0

Observation: The LHS and RHS columns are identical for all values of A, B, and C, which proves the identity holds true.

Question 5

Determine which of each of these functions from set $\{a, b, c, d\}$ to itself is one-to-one, onto, or one-to-one correspondence. Mention whether each function is invertible. If invertible, find its inverse.

a) $f(a)=b, f(b)=a, f(c)=c, f(d)=d$

b) $f(a)=b, f(b)=b, f(c)=d, f(d)=c$

c) $f(a)=d, f(b)=b, f(c)=c, f(d)=d$

Answer:

a) One-to-one and onto \rightarrow bijective \rightarrow invertible. Inverse: $f^{-1}=f$.

b) Not one-to-one, not onto \rightarrow not invertible.

c) Not one-to-one, not onto \rightarrow not invertible.

Question 6

Find the following compositions of the two functions:

$$f(x) = (x + 1)/x, \quad g(x) = x^2.$$

a) $(f \circ g)(x)$ b) $(f \circ f)(x)$ c) $(g \circ f)(x)$ d) $(g \circ g)(x)$

Answer:

a) $(f \circ g)(x) = f(x^2) = (x^2 + 1)/x^2.$

b) $(f \circ f)(x) = f((x + 1)/x) = (2x + 1)/(x + 1).$

c) $(g \circ f)(x) = g((x + 1)/x) = ((x + 1)/x)^2 = (x + 1)^2/x^2.$

d) $(g \circ g)(x) = g(x^2) = x^4.$