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Differential Equations
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m Differential Equations and Mathematical Models
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The differential equation X d X

X)) = depst & &2 dt
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involves both the unknown function x(7) and its first derivative x’(r) = dx/dt. The differential
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- involves the unknown function y of the independent variable x and the first two derivatives
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y(x) = Ce*, (1

Thus every function y(x) of the-form.in Eq. (1) sansﬁes—.md thus is a solution of—the
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m Population growth  The time rate of change of a population P(r) with constant birth and
death rates is, in many simple cases, proportional to the size of the population. That is,

aP
dr

where k is the constant of proportionality. [+

kP, (6)

Let us discuss Example 5 further. Note first that each function of the form

P(t) = Ce*! (7)
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Example 7 If C is a constant and y(x) = 1/(C — x), then

dy 1 2

dx (C —x)? -

if x # C. Thus
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SGIGl R If A and B are constants and

v(x) = Acos3x + Bsin3x, (14)

then two successive differentiations yield

¥'(x) = —34sin3x + 3B cos 3x,
y"’(x) = =94 cos 3x — 9B sin3x = —9y(x)

for all x. Consequently, Eq. (14) defines what it is natural to call a two-parameter family of
solutions of the second-order differential equation

yY'+9y =0 (15)

on the whole real number line. Figure 1.1.6 shows the graphs of several such solutions. W
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SETTSERIE  Given the solution y(x) = 1/(C — x) of the differential equation dy/dx = y? discussed in
Example 7, solve the initial value problem xX=t

dv
Y = },2_ y(1) =2._» d=2
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m Problems

In Problems 1 through 12, verify by substitution that each
given function is a solution of the given differential equation.

Throughout these problems, primes denote derivatives with re-
spect to x.
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In Problems 13 through 16, substitute y = e"™ into the given
differential equation to determine all values of the constant r
for which y = e"* is a solution of the equation.
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In Problems 17 through 26, first verify that y(x) satisfies the
given differential equation. Then determine a value of the con-
stant C so that y(x) satisfies the given initial condition. Use a
computer or graphing calculator (if desired) to sketch several
typical solutions of the given differential equation, and high-
light the one that satisfies the given initial condition.
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35. In a city having a fixed population of P persons, the time
rate of change of the number N of those persons who have
heard a certain rumor is proportional to the number of

those who have not yet heard the rumor~—__
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In Problems 37 through 42, determine by inspection at least
one solution of the given differential equation. That is, use

your knowledge of derivatives to make an intelligent guess.
Then test your hypothesis.
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m Integrals as General and Particular Solutions
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m Solve the initial value problem X
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S Gl RN River crossing  Suppose that the river is 1 mile wide and that its midstream velocity is
vo = 9 mi/h. If the swimmer’s velocity is vg = 3 mi/h, then Eq. (19) takes the form
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m Problems

In Problems 1 through 10, find a function y = f(x) satisfy-
ing the given differential equation and the prescribed initial
condition.
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: K : :
In Problems 11 through 18, find the position function x(t) of a
moving particle with the given acceleration a(t), initial posi-
tion xg = x(0), and initial velocity vg = v(0).

11. a(t) = 50, vg = 10, xg = 20

a= dv V= dx
dE dc

%\% = 50 _p JdV-:ondl:

N= SO0t +¢,\| 520w 20000
o C\ P\-&

D (_+ \O aé/luuu; Q!'JJ \-.0_5
V= 5ok o C VESL T t"l;'-o

Cv=10
;\S/luw
\l= 5ot x\0
\/W——\_/’/v g
X oL B

dr — ook xto

\(o\x :f(BoEﬂ—lo ) dE

r-‘.



% = §<2_:>_t7‘_‘. ot ¥ C,
Co S5 X 2 uodl L7 Uosas
20 = el kb
2= X =20
A= 9254°% -1\ Co

20 — .. AA\QD X Co

C—'Z = 20

X&) = 252 4 ot + 20

" P



15. a(t) =4(t +3)%, v9 = —1. x0 = |

QA= é\.{- = L\(_t'\"3)2-
dt
jolv -.:v(‘-\ U:-\-'S)Ld{:
r.*
Vo= 4 (£+3). ¢,
3
’V‘:.".--\ E=p

32 L ogosr b Jils s

3
—\.= l:\{f (O '\'3) * C

"‘\ = 36 '\’C’\

Ci=-3%

S
\Izﬂéct*z) -3+




L‘.
A -_-_/%_ (£+3) 23+ 5. C,

vl
> -:53—(&-\:‘3)“— 3k =y

s bro G\ @t B U

. o\
\ = _%_(5) — 3%(0) xCa

K g 24__ -\-Cp,—

o C,J.A;.- ""26

b‘
% = —é- (-&39-3) -3 —-2€




m Separable Equations and Applications
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m Solve the differential equation
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m Find all solutions of the differential equation

% = 6x(y — 1)?/3. J =1
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m Problems

Find general solutions (implicit if necessary, explicit if conve-
nient) of the differential equations in Problems I through 18.
Primes denote derivatives with respect to x.
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Find explicit particular solutions of the initial value problems
in Problems 19 through 28.
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Problems 29 through 32 explore the connections among gen-
eral and singular solutions, existence, and uniqueness.

29. (a) Find a general solution of the differential equation
dy/dx = y*. (b) Find a singular solution that is not in-
cluded in the general solution. (c) Inspect a sketch of typi-
cal solution curves to determine the points (a, b) for which
the initial value problem y’ = y2, y(a) = b has a unique

solution.
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|[I) Linear First-Order Equations

THEOREM 1 The Linear First-Order Equation

If the functions P(x) and Q(x) are continuous on the open interval / containing
the point xg, then the initial value problem

dv
> =+ Py =0(). y(x)=o (D

has a unique solution y(x) on /, given by the formula in Eq. (6) with an appro-
priate value of C.

Remark 1 Theorem 1 gives a solution on the entire interval / for a linear differential
equation, in contrast with Theorem 1 of Section 1.3, which guarantees only a solution on a
possibly smaller interval.

Remark 2 Theorem 1 tells us that every solution of Eq. (3)1s included in the general solu-
tion given in Eq. (6). Thus a linear first-order differential equation has nosingular solutions.

Remark 3 The appropriate value of the constant C in Eq. (6)—as needed to solve the
initial value problem in Eq. (11)—can be selected “automatically” by writing
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Example 1

Solve the initial value problem
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m Find a general solution of
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Problems

Find general solutions of the differential equations in Prob-
lems 1 through 25. If an initial condition is given, find the
corresponding particular solution. Throughout, primes denote
derivatives with respect to x.
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SCIOT-IERA  Solve the differential equation
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m Problems

In Problems 31 through 42, verify that the given differential
equation is exact; then solve it.
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32. 4x—y)dx + (6y —x)dy =0
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34. 2xy2 4+ 3x2)dx + 2x2y + 4y} dy =0
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36. (1 +ye™)dx+ 2y + xe*)dy =0




39. 3x2y3 + yHdx+ (3x3y2 + y* +4xy3)dy =0
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