1.1 CLASSIFICATION OF DIFFERENTIAL EQUATIONS; THEIR ORIGIN AND
APPLICATION

A. Differential Equations and Their Classification

DEFINITION DE

An equation involving derivatives of one or more dependent variables with respect to one or
more independent variables is called a differential equation.*
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peanmoN ODE

A differential equation involving ordinary derivatives of one or more dependent variables
with respect to {singldindependent variable is called an ordinary differential equation.

ODE dsr\asw' aldadh Qsast

st Dlslar OS5 adotle alsles o

d.‘d _ dy .*-33:(3 ODE

dr? d x Iv da L1 Yo
Lias 3

4y 4+ dx = 5 ODE
TV :+

|

dx
de

W
Q
x
Q
<

’C,’”
e’ c a__a_. .@—(—*— .-a_x_-
£, D% o/ 3t
e



pernmoN PDE

A differential equation involving partial derivatives of one or more dependent variables
with respect to more than one independent variable is called a partial differential
equation.
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DEFINITION

Thdorderlof the highest ordered derivative involved in a differential equation is called the
order of the differential equation.
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P Example 1.1

For examples of differential equations we list the following:
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DEFINITION

Linear /
Nonlinear
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A linear ordinary differential equation of order n, in the dependent variable y and the
independent variable x, is an equation that is in, or can be expressed in, the form
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4+ 4+a ._1(x)

+ a,(x)y = b(x),

A nonlinear ordinary differential equation is an ordinary differential equation that is not

linear.
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»  Example 1.5

The following ordinary differential equations are both linear. In each case y is the
dependent variable. Observe that y and its various derivatives occur to the first degree
only and that no products of y and/or any of its derivatives are present.

d’y . dy
s Ley=0 :
d’+sdx+ y = 0 (1.5)
d*y zd"‘y 5 dy
d"+ E—;+x E=xe (1.6)
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» Example 1.6

The following ordinary differential equations are ali nonlinear:
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