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1.1

.s/

Definitions
Definition 1.1.1 An equation containing the derivatives of one or more dependent
| variables, with respect to one or more independent variables, is said to be a differential
equation (DE).

f Differential Equations: There are two types of differential equations:
1. Ordinary differential equations (ODE)
2. Partial differential equations (PDE)
1. Ordinary Differential Equation: If an equation contains only ordinary derivatives of
one or more dependent variables with respect to a single independent variable |t is said to
be an ordinary differential equation (ODE)

3 5 ind = X
1 é"‘i+6\'—0 (2) (3—-}) - (%‘;) +7y=cosx =" dep =Yy
The general ‘t})f}l:l of an ordinary differential equation is

o 57

i Hlen 28329y

dx’ dx? dx"

Example: (1 )

2

2. Partial Differential Equation: An equation involving partial derivatives of one or more
dependent variables of two or more independent variables is called a partial differential

equation (PDE). ':,_::, ’:;V u:d-r P
Example: (1) ‘3 4+ ‘3 = (2) a‘ ng;z\ ep=>/
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Example: (1 — xz)—5 +2.x5r +3x =0, Order— 2, Degree — 1.
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= degree =4
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o= J X | ook | 2 ) | Linear
(2) +9-0 y | x |opE | | 2| Vo Jmeo
8 W | % | PRE| 1 | 1 |\ imeew
i Vi X ODE | 2 1 |Nonlnta/
- J X ODE 3 1 Linéur
(&) +o=0 N X | ope| 2 | 3 |wonknear




g.....a:' C\al.ﬁ{.-.-\ 23t \as

1.2 Linear and Nonlinear DEs abi £S5

Definition 1.2.1 A DE is said to be linear if

e the dependent variable and all its derivatives are of the first degree,
e cach coefficient depends only on the independent variable.
Otherwise it is nonlinear.

7 el 20 (“.
oy
I.l

L, d €Y +y*" =0 — nonlinear (power not 1) J —v

=« Example 1.1
2 d'zf + sin y = 0 — nonlinear (nonlinear function of y)

3. (1- “)—w +ch‘r + 6y = ¢* — linear
' SNO | Differential Equation | Order | Linear (or) Nonlinear |degeee

1 \»E;_‘.l_(:—}:‘:) +y=0 3 Mon linear™ |
2 Py ® — 3y +6y=0 Y Linear 1
4. 4 %\T - \/1 i (g:) L Mon[near |
4 (sin@)y” — (cos0)y” =2 3 linear 1
5 ‘1—'7‘ + 9+ u = cos(r+u) 2 Mon linear ;
6 (1_‘) —4xy' +5y = cosx 2 Ainecay !
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s Example 1.2 Determine whether the given first-order differential equation is linear
(or) nonlinear in the indicated dependent variable.
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1.3 Solution of DE & Verification of solution
dY +uy =5 gl d—pp Yzet o1 SO
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s5e* = 5eX
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« Example 1.3 (i) Verify thaty, = —-:l,;e"‘ is a particular solution of y”’ —4y = ¢*
(ii) Verify that indicated function y = e3* cos2x is a solution of y’ — 6y’ + 13y = 0
(iii) Verify that y = cje** +cye™>* — 1" is the general solution of y” — 4y = e*

(i) dp:'j'@’( REPSINY. Y7~y =e*
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1.4 Initial-Value Problem TV

AN 505t vie o ol aLl ye uys

= Example 1.4 If y = xz#“ is a one-parameter family of solutions of the first-order

DE y’ +2xy? = 0. Find a solution of the first-order IVP consisting of this differential
equation and the given initial condition.

(a) ¥(2)= -;; (b) y(12) = %-‘, 9

S - |
£ x % C =
0\) 362): J
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e il - 4 = _.\_
J ety = 4 xc




X*xC
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2 =Y C }C:: -2.\

=« Example 1.5 If y = cje' + coe™ is a two-parameter family of solutions of the

second-order DE y” —y = 0. Find a solution of the second-order IVP consisting of this
differential equation and the given initial conditions.

(@) ¥(0)=1,Y(0)=2 (b) y(-1) =5, ¥ (-1)=-5.
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Exercise 1.1 Verify that the indicated function is a solution of the given DE:
(i) y'—4yY +4y=0; y=c1e¥+crxe™
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(i) y'—6y +13y=0; y=e*cos2x
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(iii)) y’"+y=tanx; y= —(cosx)In(secx+ tanx)
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